The presented method offers a way to detect functional effective cardiotropic autoantibodies in the plasma of patients with dilated cardiomyopathy, irrespective of the specific antigen, by analysing the impact of isolated patient immunoglobulin on cellular shortening and intracellular calcium transients in isolated rat cardiomyocytes.
Dilated cardiomyopathy (DCM) is one of the main causes for heart failure in younger adults1. Although genetic disposition and exposition to toxic substances are known causes for this disease in about one third of the patients, the origin of DCM remains largely unclear. In a substantial number of these patients, autoantibodies against cardiac epitopes have been detected and are suspected to play a pivotal role in the onset and progression of the disease2,3. The importance of cardiac autoantibodies is underlined by a hemodynamic improvement observed in DCM patients after elimination of autoantibodies by immunoadsorption3-5. A variety of specific antigens have already been identified2,3 and antibodies against these targets may be detected by immunoassays. However, these assays cannot discriminate between stimulating (and therefore functionally effective) and blocking autoantibodies. There is increasing evidence that this distinction is crucial6,7. It can also be assumed that the targets for a number of cardiotropic antibodies are still unidentified and therefore cannot be detected by immunoassays. Therefore, we established a method for the detection of functionally active cardiotropic antibodies, independent of their respective antigen. The background for the method is the high homology usually observed for functional regions of cardiac proteins in between mammals8,9. This suggests that cardiac antibodies directed against human antigens will cross-react with non-human target cells, which allows testing of IgG from DCM patients on adult rat cardiomyocytes. Our method consists of 3 steps: first, IgG is isolated from patient plasma using sepharose coupled anti-IgG antibodies obtained from immunoadsorption columns (PlasmaSelect, Teterow, Germany). Second, adult cardiomyocytes are isolated by collagenase perfusion in a Langendorff perfusion apparatus using a protocol modified from previous works10,11. The obtained cardiomyocytes are attached to laminin-coated chambered coverglasses and stained with Fura-2, a calcium-selective fluorescent dye which can be easily brought into the cell to observe intracellular calcium (Ca2+) contents12. In the last step, the effect of patient IgG on the cell shortening and Ca2+ transients of field stimulated cardiomyocytes is monitored online using a commercial myocyte calcium and contractility monitoring system (IonOptix, Milton, MA, USA) connected to a standard inverse fluorescent microscope.
1. IgG Isolation from Patient Samples
2. Isolation of Rat Cardiomyocytes
3. Fura-2 Staining of Cardiomyocytes
4. Recording of Cell Shortening and Ca2+ Transients
Two examples for the measurement of cellular inotropy in field stimulated adult cardiomyocytes (Figure 2) using a myocyte Ca2+ and contractility recording system are given below. Figure 3 gives an impression of a control measurement, while in Figure 4 the effect of cardiodepressive antibodies of a patient with DCM is shown.
In both examples, initial cell shortening and Ca2+ transient during superfusion with EB exhibit clear and constant peaks, which is a prerequisite for the analysis. We know from experience that cells exhibiting an initial bl%peak h in the range of 7 – 14% suit best for our application, while cardiomyocytes with lower or higher initial contractility often tend to exhibit unprovoked changes of cell shortening. After application of control IgG, i.e. IgG isolated from healthy control subjects, inotropy of cardiomyocytes remains unchanged throughout the whole measurement (Figure 3A). In contrast, superfusion with IgG containing cardiodepressive antibodies is followed by a decrease of cell shortening (Figure 4A), accompanied by reduction Ca2+ transients which is typically less pronounced (Figure 4B). We usually observe that a new steady state is established for both, cell shortening and Ca2+ transients, after 2 min which is conserved until the end of the measurement after 5 min. The given example shows a very clear negative inotropic effect with a decrease of cell shortening by 54% and of Ca2+ transients by 31% after 5 min. However, changes are often less pronounced. Therefore, we defined an upper and lower limit for negative and positive inotropy as mean ± 2SD for control IgG of a healthy control group to avoid false positive results. Accordingly, cells are only considered as negative or positive inotropic when changes of cell shortening exceed this threshold, which we determined to be approximately ± 10%.
Figure 1. Flow chart of autoantibody detection by measuring cardiomyocyte contractility. First, IgG is extracted from patient samples using anti-IgG sepharose columns (highlighted in yellow). Second, cardiomyocytes are isolated from rat hearts by enzymatic digestion and stained with Fura-2 (highlighted in blue). Finally, cell shortening and Ca2+ transients are monitored online using a Myocyte Calcium and Contractility Recording System (highlighted in green).
Figure 2. Isolated rat cardiomyocyte positioned in the video area of the Myocyte Contractility Recording System. The graph below the cell displays the calculated intensity traces used for edge detection. Arrows indicate edge detecting control elements. Click here to view larger figure.
Figure 3. Representative example of a control measurement. Cell shortening (A) and Ca2+ transient (B) was monitored online before (initial), immediately (acute), 2 min and 5 min after superfusion with IgG. Red lines indicate pausing of the measurement.
Figure 4. Example measurement of an IgG sample containing cardiodepressive antibodies. Cell shortening (A) and Ca2+ transient (B) was measured online before (initial), immediately (acute), 2 min and 5 min after superfusion with IgG. Red lines indicate pausing of the measurement.
The presented method offers a suitable way to detect functionally effective cardiac autoantibodies in patients with DCM of unclear origin. In comparison to other methods, e.g. the detection of functional active antibodies against the β1-adrenoceptor by their impact on cAMP levels6, our method is independent of a specific epitope. Of course there are other epitope independent assays described in the literature, i.e. counting the beating rate of neonatal cardiomyocytes13, measuring calcium currents in adult cardiomyocytes by patch clamp technique or the contractility of isolated Purkinje fibers14. In advantage to these methods, the assay presented here is less time consuming and provides increased objectivity due to the standardized protocol. Furthermore, it allows detecting the impact on contractility and intracellular calcium transients at the same time.
Similar to other in vitro assays, the results obtained with the presented method may be challenged by the artificial conditions applied to the cells. Cultured neonatal rat cardiomyocytes were reported to attach preferentially between micropillars with a distance of 30 μm or less than on flat substrates. When attached to the latter, cells were found to display actin stress fibers and unordered myofibers15. However, the potential impact of stress fibers in the contractility assay described here may be negligible since adult cardiomyocytes are only cultured for a very short time period of up to 6 hr which may reduce the formation of such fibers and cell shortening and Ca2+ transient are referred to the initial contractility of the respective cell to minimize the influence of individual differences between cells. Another limitation is the high demand of experimental animals and time. Therefore the method is not suitable for high-throughput screening of patients.
Further implementations are conceivable for the method. Due to the antigen-independence it can be applied to other idiopathic cardiovascular diseases, where an autoimmune impact is assumed.
Moreover, contractility measurements can easily be adjusted to study functional effects of other substances. This allows analyzing a potential impact of drugs on the heart, which may be beneficial e.g. in drug development and testing. Besides the basic parameters provided by the changes of cell shortening and Ca2+ from baseline, further information can be obtained from the measurements which permits a more detailed definition of the observed effect. For example, the departure and return velocity can be calculated from the cell shortening events which could indicate a specific systolic and diastolic effect of a drug or antibody.
The authors have nothing to disclose.
This work was supported by the Sonderforschungsbereich Transregio 19 (SFB/TR19, C2) of the Deutsche Forschungsgemeinschaft (DFG), the Federal Ministry of Economics and Technology project ZIM-KF 2727801MD0 and the Centre for Innovation Competence – Humoral Immune Responses in Cardiovascular Diseases (ZIK-HIKE, BMBF FKZ 03Z2CN12) of the Federal Ministry of Education and Research, Germany. Housing and experiments with animals were performed in accordance with the recommendations of the Society for Laboratory Animal Science (Gesellschaft für Versuchstierkunde, GV-SOLAS) and the Federation of European Laboratory Animal Science Association (FELASA).
Name of the reagent/equipment | Company | Catalogue number | Comments |
Immunosorba preservation solution | Fresenius Medical Care | 903609211 | |
Collagenase type 2 | Cell System | LS004176 | |
BSA, fatty acid free | Sigma-Aldrich | A6003 | |
Laminin | Sigma-Aldrich | L2020 | |
Fura-2 AM | Sigma-Aldrich | F0888 | 1 mg/ml in DMSO |
Econo Pac Chromatography Columns | BioRad | 732-1010 | |
Spectra/Por Biotech Cellulose Ester Dialysis Membrane | Spectrumlabs | 131417 | |
4 well Chambered Coverglass | Nunc | 155383 | |
Myocyte Calcium and Contractility Recording System | IonOptix | ||
IonWizard 6.0 analysis software | IonOptix |