Dopamine is distinctly regulated in the midbrain nuclei, which contain the cell bodies and dendrites of the dopamine neurons. Here we describe a dissection and sample-handling approach to maximize results, and thus conclusions and insights, on dopamine regulation in the midbrain nuclei of the substantia nigra (SN) and ventral tegmental area (VTA) in rodents.
Dopamine is a vigorously studied neurotransmitter in the CNS. Indeed, its involvement in locomotor activity and reward-related behaviour has fostered five decades of inquiry into the molecular deficiencies associated with dopamine regulation. The majority of these inquiries of dopamine regulation in the brain focus upon the molecular basis for its regulation in the terminal field regions of the nigrostriatal and mesoaccumbens pathways; striatum and nucleus accumbens. Furthermore, such studies have concentrated on analysis of dopamine tissue content with normalization to only wet tissue weight. Investigation of the proteins that regulate dopamine, such as tyrosine hydroxylase (TH) protein, TH phosphorylation, dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2) protein often do not include analysis of dopamine tissue content in the same sample. The ability to analyze both dopamine tissue content and its regulating proteins (including post-translational modifications) not only gives inherent power to interpreting the relationship of dopamine with the protein level and function of TH, DAT, or VMAT2, but also extends sample economy. This translates into less cost, and yet produces insights into the molecular regulation of dopamine in virtually any paradigm of the investigators’ choice.
We focus the analyses in the midbrain. Although the SN and VTA are typically neglected in most studies of dopamine regulation, these nuclei are easily dissected with practice. A comprehensive readout of dopamine tissue content and TH, DAT, or VMAT2 can be conducted. There is burgeoning literature on the impact of dopamine function in the SN and VTA on behavior, and the impingements of exogenous substances or disease processes therein 1-5. Furthermore, compounds such as growth factors have a profound effect on dopamine and dopamine-regulating proteins, to a comparatively greater extent in the SN or VTA 6-8. Therefore, this methodology is presented for reference to laboratories that want to extend their inquiries on how specific treatments modulate behaviour and dopamine regulation. Here, a multi-step method is presented for the analyses of dopamine tissue content, the protein levels of TH, DAT, or VMAT2, and TH phosphorylation from the substantia nigra and VTA from rodent midbrain. The analysis of TH phosphorylation can yield significant insights into not only how TH activity is regulated, but also the signaling cascades affected in the somatodendritic nuclei in a given paradigm.
We will illustrate the dissection technique to segregate these two nuclei and the sample processing of dissected tissue that produces a profile revealing molecular mechanisms of dopamine regulation in vivo, specific for each nuclei (Figure 1).
1. Dissection
2. Tissue Analysis: HPLC for Dopamine and Metabolites
For complete information on the HPLC equipment and maintenance, refer to HPLC analysis at the end of the manuscript.
3. Tissue Analysis: Total Protein and Final Normalization of TH and DAT Results
4. Tissue Analysis: Site-specific TH Phosphorylation
The phosphorylation of TH at ser31 or ser40 can increase L-DOPA biosynthesis in catecholaminergic cells 12. Although the amount of phosphorylation at each site necessary to increase L-DOPA biosynthesis in dopaminergic brain regions like SN and VTA is not established, there is evidence that ser31 phosphorylation plays a significant role in regulating L-DOPA biosynthesis 10 and co-varies with DA tissue content among the striatum, nucleus accumbens, SN, and VTA 2, 10. Nonetheless, inclusion of ser40 determinations are necessary, as numerous studies show it can affect TH activity, particularly if a threshold of phosphorylation is reached 12.
While ser19 phosphorylation does not affect TH activity alone 13,14, it can be considered a sentinel for Ca2+-dependent signaling in the DA neuron, given that extracellular Ca2+ is necessary to increase ser19 phosphorylation under depolarizing conditions 12. Furthermore, there is a significant positive correlation of ser19 phosphorylation with ser31 phosphorylation only in the SN and VTA 10, signifying that ser19 phosphorylation status could affect ser31 phosphorylation, and thus indirectly L-DOPA biosynthesis.
Sample load considerations for optimal quantification of site-specific TH phosphorylation stoichiometry: Below, the considerations required for accurate and precise determinations of site-specific TH phosphorylation in dissected tissues is presented. When possible, a calibrated TH phosphorylation standard should be included in the assessment of sample TH phosphorylation. The sample load must take into account inherent stoichiometry at each phosphorylation site so that the assay quantifies phosphorylation within the dynamic working range of the antibody being used. As a final note, the inherent total protein coming into the assay for each sample should be also loaded in the standard curve lanes. This is easily achieved with a carrier protein (such as rat liver) which does not express TH.
5. Representative Results
DA region | Total DA recovered | DA per mg protein | DA per ng TH |
striatum | 214 ± 16 | 165 ± 13 | 0.56 ± 0.11 |
SN | 8.4 ± 0.8 | 6.1 ± 0.5 | 0.18 ± 0.03 |
Nucleus accumbens | 60 ± 6 | 75 ± 4 | 0.77 ± 0.03 |
VTA | 6.0 ± 1.0 | 9.2 ± 1.4 | 0.22 ± 0.03 |
Figure 1. Dopaminergic readouts from one tissue dissection.
Figure 2. Dissection Technique for isolating the midbrain dopaminergic neuropil. Technique for dissecting substantia nigra (SN) from ventral tegmental area (VTA). 1. Remove overlying cortex and hippocampus (these structures have already been removed in the above image). 2. Make a vertical cut separating the pigmented area of the SN from the VTA. 3. Make a horizontal cut at or near the midline just above the dorsal and lateral most part of the SN. 4. Tease the SN away from the rest of the brainstem. Once SN has been removed, similarly tease the VTA away from the rest of the midbrain. Note: this section is typically observed at coordinates, relative to Bregma, at AP 5.7.
Figure 3. second (and final) normalization of total protein load-Ponceau S staining for Image J analysis. Ponceau S protein staining of a total TH determination in rat substantia nigra samples. The first five lanes form the left are the standard total TH curve, to which 28 μg protein from rat liver homogenate was added to mirror the protein load from the substantia nigra samples. The next lane contains molecular weight (MW) markers. The remaining lanes contain ~28μg protein from rat substantia nigra samples. The protein loads are based on the protein concentration of each sample as determined by the BCA method. However, despite what should be equal loads, there are variations in the darkness of Ponceau S staining between the samples indicating a slight variability in protein concentrations, which is corrected for by normalization using ImageJ analysis to analyze the amount of Ponceau S staining for each sample.
Figure 4. Representative TH phosphorylation results from controls and treatments. Representative ser31 phosphorylated tyrosine hydroxylase (pTH) and ser40 pTH Western blots from saline and methamphetamine treated Wistar rats from a previous study4. A. ser 31 pTH in rat substantia nigra samples. The calibrated ser 31 pTH standard curve ranges from 0.3 ng to 2.0 ng and is within the linear range of detection. Based on previous Western blot analysis of total TH levels, 6 ng of total TH were loaded for each sample. B. ser40 pTH in rat ventral tegmental samples. The calibrated ser40 pTH standard curve ranges from 0.2 ng to 1.5 ng and is within the linear range of detection. Based on previous Western blot analysis of total TH levels, 9 ng of total TH were loaded for each sample.
As outlined in Figure 1, the methods detailed above should yield multiple readouts of dopamine and its regulating proteins TH, DAT, and VMAT2 from one sample of SN or VTA obtained from either the rat or mouse. Again, the benefits of carrying out this protocol are that the investigator can obtain operationally-matched readouts of how dopamine is regulated in vivo under virtually any experimental paradigm and, in doing so, save significant experimental resources by reducing the number of animals required in any experiment.
It is absolutely imperative that the investigator observe temperature requirements imposed during the dissection (4° C), storage of tissue (at least -70° C), tissue sonication (immediate sonication after removal from storage temperature) in ice-cold HPLC buffer and subsequent pellet formation and processing. Once the pellet is sonicated and boiled in SDS solution, the samples may continue to be further processed at room temperature. Storage of archived HPLC analyzed sample and the sample buffer prepared samples for protein analysis should be at -80° C.
Again, the major advantage of the protocol is the innate approach to operationally-match results pertaining to dopamine regulation in vivo. Furthermore, normalizing dopamine tissue readouts to markers of dopaminergic neuropil (TH, DAT) provide a large measure of assurance that the investigator is dissecting SN or VTA with consistency and accuracy. Given the involvement of dopamine in the addiction, psychiatric disorder, and locomotor arenas, this protocol could be employed in many experiments. One notable limitation is that the interpretation of TH phosphorylation results should be conservative, as it is not known at this time the extent to which an increase in phosphorylation at ser31 or ser40 is required in vivo to increase L-DOPA biosynthesis. However, as mentioned, there is evidence that ser31 phosphorylation appears to regulate L-DOPA biosynthesis and has a role in regulating total dopamine tissue content in the CNS 2,10. At this time, standards for TH protein and TH phosphorylation are not commercially available. However, this laboratory has maintained and expanded such standards based upon those used when the first paper on TH phosphorylation regulation in vivo was published 11. Still, it is possible to normalize dopamine tissue content to recovered TH protein in these discrete regions using this protocol.
The authors have nothing to disclose.
Funding for the this work, and as cited 2,10, was provided, in part, by a research grant awards to MF Salvatore from the American Federation for Aging Research, The Edward P. Stiles Trust Fund and Biomedical Research Foundation of Northwest Louisiana, and to BS Pruett from the Ike Muslow Predoctoral Fellowship, LSU Health Sciences Center-Shreveport.
HPLC system:
The basic system consists of a Shimadzu LC10-ADvp HPLC pump, a Waters WISP 717 automatic sample injector, a 250 X 4.4 mm 5 micron Spherosorb ODS-1 C18 reverse-phase column (Waters), a Bioanalytical Systems (BAS) TL12 dual glassy carbon electrode, two BAS LC4B electrochemical detectors, and a Waters Empower 2 data collection and integration system.
The column is maintained at 30-45°C (BAS LC22A column heater). The mobile phase is 0.1 M sodium phosphate (pH 3.0), 0.1 mM EDTA, 0.2-0.4 mM 1-Octane Sulfonic Acid (Eastman-Kodak), and 0.35% acetonitrile (v/v), filtered through a 0.45 micron filter. Flow rate is of 1.2 ml/min. Four liter batches of mobile phase are optimized for separations by adjusting the pH, Octane Sulfonic Acid and column temperature. The mobile phase is recycled, and is continuously purged with helium gas to remove dissolved oxygen. Recycling of the mobile phase is almost essential to maintain good resolution for a reasonable period of time. The mobile phase shelf-life is maintained by using a flow switch (controlled by the integrator) to divert to waste the first 2-7 min of each run.
The electrodes are maintained at potentials of approximately 0.78 and 0.95V with respect to a Ag/AgC1 reference electrode. The electrode at the higher potential is used exclusively for the determination of tryptophan (and the NMDA internal standard). The 0.78 V potential provides a superior signal to noise ratio for detection of the monoamines and compounds, other than tryptophan. The chromatograms are stored on the hard drive of the Empower workstation, and subsequently processed and the data transferred directly into an Excel spreadsheet for computation of metabolite amounts and compilation of group data.
Pump: Shimadzu LC-10AD
Cell: BAS Cross Flow. Glassy carbon working electrode at 0.780 and 0.950 V potential.
Detector: BAS LC-4B operated in dual channel mode.
Data Acq. System: Waters Empower Pro 2.
Injector: Waters WISP 717
Column: Waters Spherosorb ODS-1, 5 μM particle, 4.4 mm X 250 mm.
Name of the reagent | Company | Catalogue number |
Sodium Dodecyl Sulfate (SDS) | – J.T. Baker | 4095-02 |
Trizma Base | Sigma | T1503-1KG |
Trizma HCl | Sigma | T3253-1KG |
Glycerol | Sigma | G8773-500 mL |
PVP-40 | Sigma | PVP40-1KG |
dPBS | Gibco | 21600-069 |
Tween20 | Sigma | P1379-500 mL |
Glycine | Sigma | G8898-1KG |
Ponceau S | Fluka | 81460 |
Bromophenol Blue | Sigma | B8026-5G |
Dithiothreitol | Sigma | D-9163 |
Protein Standard 2 mg BSA | Sigma | P5619-25VL |
Pierce BCA Protein Assay Reagent A | Thermo- Fisher Scientific | 23223 |
Precision Plus Protein Standard | Bio Rad | 161-0373 |
[125I]-protein A, specific activity | Perkin-Elmer |
Table 2. Specific reagents.
Reagents | Formulas |
10% SDS | 10 g SDS, 100 mL DI H20 |
1% SDS (pH to 8.2) |
|
Copper II Sulfate Solution |
|
3X Sample Buffer |
|
1X Sample Buffer | Dilute 3X Sample Buffer down to 1X sample buffer using DI H20 |
10X Running Buffer (Makes 4 L) |
|
10X Transfer Buffer: (Makes 4 L) |
|
Ponceau |
|
.2% HCl Solution | 5.2 mL HCl in 500mL of DI H20 |
PVP-T20 Blocking Soln. (Makes 4 L) |
|
10X Blot Buffer (Makes 4 L) |
|
Table 3. Protein Assay and Western Blotting Formulas.
Tyrosine hydroxylase standards: The calibrated TH protein and phosphorylation standards used by this laboratory are derived from PC12 cell extracts, which were analyzed for TH protein content and phosphorylation stoichiometries against a previously calibrated TH standards that ultimately originated from the laboratory of Dr. John Haycock 11.