Summary

使用功能磁共振成像和弥散加权成像脑结构与功能分析

Published: November 08, 2012
doi:

Summary

我们描述了一种新的方法,同时利用磁共振成像(MRI)脑功能和结构的分析。我们评估的大脑结构与高解析度的扩散加权成像和白质纤维束成像。与标准结构MRI不同的是,这些技术使我们能够直接相关的解剖大脑网络连接到功能特性的。

Abstract

复杂的计算系统的研究,有利于通过网络地图,如电路图。这种映射是特别的信息,为研究大脑的功能作用的主要是通过其连接到其他脑区的大脑区域,满足。在这份报告中,我们描述了一种新的,非侵入性的方式对有关的大脑结构和功能磁共振成像(MRI)。这种方法相结合的远程光纤连接成像和功能成像数据结构,说明在两个不同的认知领域,视觉注意和面对的看法。结构进行成像,弥散加权成像(DWI)和纤维束成像,追踪水分子的扩散,沿大脑中的白质纤维束( 图1)。这些纤维束的可视化,我们能够调查的远程连接体系结构的大脑。结果比较favora的布莱在DWI,扩散张量成像(DTI)是最广泛使用的技术之一。 DTI是无法解决的纤维束的复杂的配置,限制了它的实用程序,用于建设详细,解剖的知情模型的大脑功能。相比之下,我们的分析重现称为神经解剖学的精度和准确度。这样的好处是部分原因是由于数据采集程序,而许多DTI协议的措施扩散少量的方向( 例如 ,6或12),我们采用的扩散频谱成像(DSI)1,2协议评估257个方向的扩散和在一个范围内的磁场梯度优势。此外,DSI数据使我们能够使用更复杂的方法重建采集的数据。在两个实验(视觉注意力和面孔识别),跟踪技术揭示了合作活跃的地区,人类的大脑解剖连接支持现存的假设,他们形成功能性的网络。 DWI使我们能够创建一个“电路二阿格拉姆“,并复制它以个人为主体的基础上,监​​测任务相关的大脑活动在网络的兴趣为目的。

Protocol

1。 MR数据采集设备 图2和图3中总结了数量的选择要在扩散MRI数据采集,数据重建,和纤维跟踪。请记住,这些选择通常涉及权衡,最好的选择可能取决于一个人的研究目标。例如,DSI和多壳HARDI(参见图2)通常使用较高的“b值”( 即 ,强扩散加权)DTI。其结果是,这些方法有更好的角分辨率,这是必要的解决穿越或“接吻”纤维( 即 …

Discussion

高分辨率DWI和纤维束成像提供了一种强大的方法,为研究人类大脑的连接结构。在这里,我们目前的证据表明,这种结构性的体系结构是有意义的脑功能,通过功能磁共振成像评估。通过使用跟踪技术种子基于fMRI的任务的激活,我们发现证据表明,合作活跃期间视觉注意的脑区解剖学connectedconsistent与功能性神经解剖学的先验知识( 图7)。同样,面孔识别功能性神经解剖学是符合我?…

Declarações

The authors have nothing to disclose.

Acknowledgements

表确认和资金来源。这项工作是支持由NIH RO1-MH54246(MB),美国国家科学基金会BCS0923763(MB),美国国防高级研究计划局(DARPA)根据合同NBCHZ090439(WS),海军研究局(ONR)办公室奖N00014-11 -1-0399(WS),和美国陆军研究实验室(ARL)根据合同W911NF-10-2-0022(WS)。的看法,意见,和/或发现在此演示文稿的作者,不应该被解释为代表的官方意见和政策,任何明示或暗示的保证,上述机构或美国国防部。

Referências

  1. Wedeen, V. a. n. J., Hagmann, P., Tseng, W. I., Reese, T. G., Weisskoff, R. M. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magnetic Resonance in Medicine. 54 (6), 1377-1386 (2005).
  2. Wedeen, V. J., Wang, R. P., Schmahmann, J. D., Benner, T., Tseng, W. Y. I., Dai, G., Pandya, D. N., et al. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. NeuroImage. 41 (4), 1267-1277 (2008).
  3. Pipe, J. Pulse Sequences for Diffusion-weighted MRI. Diffusion MRI: From quantitative measurement to in-vivo neuroanatomy. , 12-35 (2009).
  4. Le Bihan, D., Poupon, C., Amadon, A., Lethimonnier, F. Artifacts and pitfalls in diffusion MRI. Journal of Magnetic Resonance Imaging: JMRI. 24 (3), 478-488 (2006).
  5. Tuch, D. S. Q-ball imaging. Magnetic Resonance in Medicine. 52 (6), 1358-1372 (2004).
  6. Sakaie, K. E., Lowe, M. J. An objective method for regularization of fiber orientation distributions derived from diffusion-weighted MRI. NeuroImage. 34 (1), 169-176 (2007).
  7. Reese, T. G., Benner, T., Wang, R., Feinberg, D. A., Wedeen, V. J. Halving imaging time of whole brain diffusion spectrum imaging and diffusion tractography using simultaneous image refocusing in EPI. Journal of Magnetic Resonance Imaging. 29 (3), 517-522 (2009).
  8. Cox, R. W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research. 29 (3), 162-173 (1996).
  9. Cox, R. W., Hyde, J. S. Software tools for analysis and visualization of fMRI data. NMR in Biomedicine. 10 (4-5), 171-178 (1997).
  10. Goebel, R. BRAINVOYAGER: a program for analyzing and visualizing functional and structural magnetic resonance data sets. NeuroImage. 3, S604 (1996).
  11. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., Bannister, P. R., et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 23, S208-S219 (2004).
  12. Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., Beckmann, C., et al. Bayesian analysis of neuroimaging data in FSL. NeuroImage. 45, S173-S186 (2009).
  13. Friston, K. J. . Statistical parametric mapping: the analysis of functional brain images. , (2007).
  14. Nichols, T., Hayasaka, S. Controlling the familywise error rate in functional neuroimaging: a comparative review. Statistical Methods in Medical Research. 12 (5), 419-446 (2003).
  15. Benjamini, Y., Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological. 57 (1), 289-300 (1995).
  16. Logan, B. R., Rowe, D. B. An evaluation of thresholding techniques in fMRI analysis. NeuroImage. 22, 95-108 (2004).
  17. Basser, P. J., Mattiello, J., LeBihan, D. Estimation of the effective self-diffusion tensor from the NMR spin echo. Journal of Magnetic Resonance, Series B. 103 (3), 247-254 (1994).
  18. Basser, P. J., Mattiello, J., LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophysical Journal. 66 (1), 259-267 (1994).
  19. Frank, L. R. Anisotropy in high angular resolution diffusion-weighted MRI. Magnetic Resonance in Medicine. 45 (6), 935-939 (2001).
  20. Frank, L. R. Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magnetic Resonance in Medicine. 47 (6), 1083-1099 (2002).
  21. Tuch, D. S., Reese, T. G., Wiegell, M. R., Makris, N., Belliveau, J. W., Wedeen, V. J. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magnetic Resonance in Medicine. 48 (4), 577-582 (2002).
  22. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R. Regularized, fast, and robust analytical Q-ball imaging. Magnetic Resonance in Medicine. 58 (3), 497-510 (2007).
  23. Tuch, D. S. Q-ball imaging. Magnetic Resonance in Medicine. 52 (6), 1358-1372 (2004).
  24. Yeh, F. C., Wedeen, V. J., Tseng, W. -. Y. I. Generalized Q-sampling imaging. IEEE Transactions on Medical Imaging. 29 (9), 1626-1635 (2010).
  25. Wang, R., Benner, T., Sorensen, A. G., Wedeen, V. J. Diffusion Toolkit: a software package for diffusion imaging data processing and tractography. Proc. Intl. Soc. Mag. Reson. Med. , 3720 (2007).
  26. Sundaram, S. K., Kumar, A., Makki, M. I., Behen, M. E., Chugani, H. T., Chugani, D. C. Diffusion tensor imaging of frontal lobe in autism spectrum disorder. Cereb Cortex. 18 (11), 2659-2665 (2008).
  27. Greenberg, A. S., Verstynen, T., Chiu, Y. -. C., Yantis, S., Schneider, W., Behrmann, M. Visuotopic Cortical Connectivity Underlying Attention Revealed with White-Matter Tractography. The Journal of Neuroscience. 32 (8), 2773-2782 (2012).
  28. Slotnick, S. D., Yantis, S. Efficient acquisition of human retinotopic maps. Human Brain Mapping. 18 (1), 22-29 (2003).
  29. Greenberg, A. S., Esterman, M., Wilson, D., Serences, J. T., Yantis, S. Control of spatial and feature-based attention in frontoparietal cortex. The Journal of Neuroscience. 30 (43), 14330-14339 (2010).
  30. Kastner, S., Ungerleider, L. G. Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience. 23, 315-341 (2000).
  31. Bürgel, U., Amunts, K., Hoemke, L., Mohlberg, H., Gilsbach, J. M., Zilles, K. White matter fiber tracts of the human brain: Three-dimensional mapping at microscopic resolution, topography and intersubject variability. NeuroImage. 29 (4), 1092-1105 (2006).
  32. Behrens, T. E. J., Jbabdi, S. . MR Diffusion Tractography. Diffusion MRI: From quantitative measurement to in-vivo neuroanatomy. , 333-352 (2009).
  33. Verstynen, T., Jarbo, K., Pathak, S., Schneider, W. In vivo mapping of microstructural somatotopies in the human corticospinal pathways. Journal of Neurophysiology. 105 (1), 336-346 (2011).
  34. Jarbo, K., Verstynen, T., Schneider, W. In vivo quantification of global connectivity in the human corpus callosum. NeuroImage. , (2012).
  35. Verstynen, T., Badre, D., Jarbo, K., Schneider, W. Microstructural organizational patterns in the human corticostriatal system. , (2012).
  36. Wang, Y., Fernández-Miranda, J. C., Verstynen, T., Pathak, S., Schneider, W. Identifying human brain tracts with tractography and fiber microdissection: mapping connectivity of the middle longitudinal fascicle as the dorsal auditory pathway. , (2012).
  37. Fernandez-Miranda, J. C., Engh, J. A., Pathak, S. K., Madhok, R., Boada, F. E., Schneider, W., Kassam, A. B. High-definition fiber tracking guidance for intraparenchymal endoscopic port surgery. Journal of Neurosurgery. 113 (5), 990-999 (2010).
  38. Fernandez-Miranda, J. C., Engh, J., Pathak, S., Wang, Y., Jarbo, K., Verstynen, T., Boada, F., Schneider, W., Friedlander, R. High-definition fiber tractography of the human brain: neuroanatomical validation and neurosurgical applications. , (2012).
  39. Shin, S., Verstynen, T., Pathak, S., Jarbo, K., Hricik, A., Maserati, M., Beers, S., Puccio, A. M., Okonkwo, D., Schneider, W. High definition fiber tracking for assessment of neurologic deficit in a case of traumatic brain injury. Journal of Neurosurgery. , (2012).
  40. Mori, S., Crain, B. J., Chacko, V. P., Van Zijl, P. C. M. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology. 45 (2), 265-269 (1999).
  41. Tournier, J., Mori, S., Leemans, A. Diffusion tensor imaging and beyond. Magnetic Resonance in Medicine. 65 (6), 1532-1556 (2011).
  42. Seunarine, K. K., Alexander, D. C. . Multiple Fibers: Beyond the Diffusion Tensor. Diffusion MRI: From quantitative measurement to in-vivo neuroanatomy. , (2009).

Play Video

Citar este artigo
Phillips, J. S., Greenberg, A. S., Pyles, J. A., Pathak, S. K., Behrmann, M., Schneider, W., Tarr, M. J. Co-analysis of Brain Structure and Function using fMRI and Diffusion-weighted Imaging. J. Vis. Exp. (69), e4125, doi:10.3791/4125 (2012).

View Video