Summary

شارك في تحليل بنية الدماغ والدالة باستخدام الرنين المغناطيسي الوظيفي وانتشارها المرجحة التصوير

Published: November 08, 2012
doi:

Summary

We describe a novel approach for simultaneous analysis of brain function and structure using magnetic resonance imaging (MRI). We assess brain structure with high-resolution diffusion-weighted imaging and white-matter fiber tractography. Unlike standard structural MRI, these techniques allow us to directly relate anatomical connectivity to functional properties of brain networks.

Abstract

The study of complex computational systems is facilitated by network maps, such as circuit diagrams. Such mapping is particularly informative when studying the brain, as the functional role that a brain area fulfills may be largely defined by its connections to other brain areas. In this report, we describe a novel, non-invasive approach for relating brain structure and function using magnetic resonance imaging (MRI). This approach, a combination of structural imaging of long-range fiber connections and functional imaging data, is illustrated in two distinct cognitive domains, visual attention and face perception. Structural imaging is performed with diffusion-weighted imaging (DWI) and fiber tractography, which track the diffusion of water molecules along white-matter fiber tracts in the brain (Figure 1). By visualizing these fiber tracts, we are able to investigate the long-range connective architecture of the brain. The results compare favorably with one of the most widely-used techniques in DWI, diffusion tensor imaging (DTI). DTI is unable to resolve complex configurations of fiber tracts, limiting its utility for constructing detailed, anatomically-informed models of brain function. In contrast, our analyses reproduce known neuroanatomy with precision and accuracy. This advantage is partly due to data acquisition procedures: while many DTI protocols measure diffusion in a small number of directions (e.g., 6 or 12), we employ a diffusion spectrum imaging (DSI)1, 2 protocol which assesses diffusion in 257 directions and at a range of magnetic gradient strengths. Moreover, DSI data allow us to use more sophisticated methods for reconstructing acquired data. In two experiments (visual attention and face perception), tractography reveals that co-active areas of the human brain are anatomically connected, supporting extant hypotheses that they form functional networks. DWI allows us to create a “circuit diagram” and reproduce it on an individual-subject basis, for the purpose of monitoring task-relevant brain activity in networks of interest.

Protocol

1. Equipment for MR Data Acquisition Figures 2 and 3 summarize a number of choices to be made in diffusion MRI acquisition, data reconstruction, and fiber tracking. Keep in mind that these choices typically involve trade-offs, and the best choice may depend upon one’s research objectives. For example, DSI and multi-shell HARDI (see Figure 2) typically use higher “b-values” (i.e., stronger diffusion weighting) than DTI. As a result, these methods have be…

Discussion

High-resolution DWI and fiber tractography provide a powerful approach for examining the connective structure of the human brain. Here, we present evidence that this structural architecture is meaningfully related to brain function, assessed by fMRI. By using tractography seeds based on fMRI task activation, we find evidence that brain areas which are co-active during visual attention are anatomically connectedconsistent with prior knowledge of functional neuroanatomy (Figure 7). Similarly, the functiona…

Declarações

The authors have nothing to disclose.

Acknowledgements

List acknowledgements and funding sources. The work is supported by NIH RO1-MH54246 (M. B.), National Science Foundation BCS0923763 (M.B.), the Defense Advanced Research Projects Agency (DARPA) under contract NBCHZ090439 (W. S.), the Office of Naval Research (ONR) under award N00014-11-1-0399 (W. S.), and the Army Research Lab (ARL) under contract W911NF-10-2-0022 (W. S.). The views, opinions, and/or findings contained in this presentation are those of the authors and should not be interpreted as representing the official views or policies, either expressed or implied, of the above agencies or the United States Department of Defense.

Referências

  1. Wedeen, V. a. n. J., Hagmann, P., Tseng, W. I., Reese, T. G., Weisskoff, R. M. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magnetic Resonance in Medicine. 54 (6), 1377-1386 (2005).
  2. Wedeen, V. J., Wang, R. P., Schmahmann, J. D., Benner, T., Tseng, W. Y. I., Dai, G., Pandya, D. N., et al. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. NeuroImage. 41 (4), 1267-1277 (2008).
  3. Pipe, J. Pulse Sequences for Diffusion-weighted MRI. Diffusion MRI: From quantitative measurement to in-vivo neuroanatomy. , 12-35 (2009).
  4. Le Bihan, D., Poupon, C., Amadon, A., Lethimonnier, F. Artifacts and pitfalls in diffusion MRI. Journal of Magnetic Resonance Imaging: JMRI. 24 (3), 478-488 (2006).
  5. Tuch, D. S. Q-ball imaging. Magnetic Resonance in Medicine. 52 (6), 1358-1372 (2004).
  6. Sakaie, K. E., Lowe, M. J. An objective method for regularization of fiber orientation distributions derived from diffusion-weighted MRI. NeuroImage. 34 (1), 169-176 (2007).
  7. Reese, T. G., Benner, T., Wang, R., Feinberg, D. A., Wedeen, V. J. Halving imaging time of whole brain diffusion spectrum imaging and diffusion tractography using simultaneous image refocusing in EPI. Journal of Magnetic Resonance Imaging. 29 (3), 517-522 (2009).
  8. Cox, R. W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research. 29 (3), 162-173 (1996).
  9. Cox, R. W., Hyde, J. S. Software tools for analysis and visualization of fMRI data. NMR in Biomedicine. 10 (4-5), 171-178 (1997).
  10. Goebel, R. BRAINVOYAGER: a program for analyzing and visualizing functional and structural magnetic resonance data sets. NeuroImage. 3, S604 (1996).
  11. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., Bannister, P. R., et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 23, S208-S219 (2004).
  12. Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., Beckmann, C., et al. Bayesian analysis of neuroimaging data in FSL. NeuroImage. 45, S173-S186 (2009).
  13. Friston, K. J. . Statistical parametric mapping: the analysis of functional brain images. , (2007).
  14. Nichols, T., Hayasaka, S. Controlling the familywise error rate in functional neuroimaging: a comparative review. Statistical Methods in Medical Research. 12 (5), 419-446 (2003).
  15. Benjamini, Y., Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological. 57 (1), 289-300 (1995).
  16. Logan, B. R., Rowe, D. B. An evaluation of thresholding techniques in fMRI analysis. NeuroImage. 22, 95-108 (2004).
  17. Basser, P. J., Mattiello, J., LeBihan, D. Estimation of the effective self-diffusion tensor from the NMR spin echo. Journal of Magnetic Resonance, Series B. 103 (3), 247-254 (1994).
  18. Basser, P. J., Mattiello, J., LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophysical Journal. 66 (1), 259-267 (1994).
  19. Frank, L. R. Anisotropy in high angular resolution diffusion-weighted MRI. Magnetic Resonance in Medicine. 45 (6), 935-939 (2001).
  20. Frank, L. R. Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magnetic Resonance in Medicine. 47 (6), 1083-1099 (2002).
  21. Tuch, D. S., Reese, T. G., Wiegell, M. R., Makris, N., Belliveau, J. W., Wedeen, V. J. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magnetic Resonance in Medicine. 48 (4), 577-582 (2002).
  22. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R. Regularized, fast, and robust analytical Q-ball imaging. Magnetic Resonance in Medicine. 58 (3), 497-510 (2007).
  23. Tuch, D. S. Q-ball imaging. Magnetic Resonance in Medicine. 52 (6), 1358-1372 (2004).
  24. Yeh, F. C., Wedeen, V. J., Tseng, W. -. Y. I. Generalized Q-sampling imaging. IEEE Transactions on Medical Imaging. 29 (9), 1626-1635 (2010).
  25. Wang, R., Benner, T., Sorensen, A. G., Wedeen, V. J. Diffusion Toolkit: a software package for diffusion imaging data processing and tractography. Proc. Intl. Soc. Mag. Reson. Med. , 3720 (2007).
  26. Sundaram, S. K., Kumar, A., Makki, M. I., Behen, M. E., Chugani, H. T., Chugani, D. C. Diffusion tensor imaging of frontal lobe in autism spectrum disorder. Cereb Cortex. 18 (11), 2659-2665 (2008).
  27. Greenberg, A. S., Verstynen, T., Chiu, Y. -. C., Yantis, S., Schneider, W., Behrmann, M. Visuotopic Cortical Connectivity Underlying Attention Revealed with White-Matter Tractography. The Journal of Neuroscience. 32 (8), 2773-2782 (2012).
  28. Slotnick, S. D., Yantis, S. Efficient acquisition of human retinotopic maps. Human Brain Mapping. 18 (1), 22-29 (2003).
  29. Greenberg, A. S., Esterman, M., Wilson, D., Serences, J. T., Yantis, S. Control of spatial and feature-based attention in frontoparietal cortex. The Journal of Neuroscience. 30 (43), 14330-14339 (2010).
  30. Kastner, S., Ungerleider, L. G. Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience. 23, 315-341 (2000).
  31. Bürgel, U., Amunts, K., Hoemke, L., Mohlberg, H., Gilsbach, J. M., Zilles, K. White matter fiber tracts of the human brain: Three-dimensional mapping at microscopic resolution, topography and intersubject variability. NeuroImage. 29 (4), 1092-1105 (2006).
  32. Behrens, T. E. J., Jbabdi, S. . MR Diffusion Tractography. Diffusion MRI: From quantitative measurement to in-vivo neuroanatomy. , 333-352 (2009).
  33. Verstynen, T., Jarbo, K., Pathak, S., Schneider, W. In vivo mapping of microstructural somatotopies in the human corticospinal pathways. Journal of Neurophysiology. 105 (1), 336-346 (2011).
  34. Jarbo, K., Verstynen, T., Schneider, W. In vivo quantification of global connectivity in the human corpus callosum. NeuroImage. , (2012).
  35. Verstynen, T., Badre, D., Jarbo, K., Schneider, W. Microstructural organizational patterns in the human corticostriatal system. , (2012).
  36. Wang, Y., Fernández-Miranda, J. C., Verstynen, T., Pathak, S., Schneider, W. Identifying human brain tracts with tractography and fiber microdissection: mapping connectivity of the middle longitudinal fascicle as the dorsal auditory pathway. , (2012).
  37. Fernandez-Miranda, J. C., Engh, J. A., Pathak, S. K., Madhok, R., Boada, F. E., Schneider, W., Kassam, A. B. High-definition fiber tracking guidance for intraparenchymal endoscopic port surgery. Journal of Neurosurgery. 113 (5), 990-999 (2010).
  38. Fernandez-Miranda, J. C., Engh, J., Pathak, S., Wang, Y., Jarbo, K., Verstynen, T., Boada, F., Schneider, W., Friedlander, R. High-definition fiber tractography of the human brain: neuroanatomical validation and neurosurgical applications. , (2012).
  39. Shin, S., Verstynen, T., Pathak, S., Jarbo, K., Hricik, A., Maserati, M., Beers, S., Puccio, A. M., Okonkwo, D., Schneider, W. High definition fiber tracking for assessment of neurologic deficit in a case of traumatic brain injury. Journal of Neurosurgery. , (2012).
  40. Mori, S., Crain, B. J., Chacko, V. P., Van Zijl, P. C. M. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology. 45 (2), 265-269 (1999).
  41. Tournier, J., Mori, S., Leemans, A. Diffusion tensor imaging and beyond. Magnetic Resonance in Medicine. 65 (6), 1532-1556 (2011).
  42. Seunarine, K. K., Alexander, D. C. . Multiple Fibers: Beyond the Diffusion Tensor. Diffusion MRI: From quantitative measurement to in-vivo neuroanatomy. , (2009).

Play Video

Citar este artigo
Phillips, J. S., Greenberg, A. S., Pyles, J. A., Pathak, S. K., Behrmann, M., Schneider, W., Tarr, M. J. Co-analysis of Brain Structure and Function using fMRI and Diffusion-weighted Imaging. J. Vis. Exp. (69), e4125, doi:10.3791/4125 (2012).

View Video