Summary

Immunohistochimie Wholemount de la topographie du cerveau révélatrice complexe

Published: April 05, 2012
doi:

Summary

Les circuits neuronaux sont topographiquement organisée en compartiments fonctionnels avec des profils spécifiques moléculaires. Ici, nous fournissons les étapes pratiques et techniques pour révéler la topographie du cerveau planétaire grâce à une approche polyvalente wholemount coloration immunohistochimique. Nous démontrons l'utilité de la méthode utilisant la cytoarchitecture bien compris et les circuits du cervelet.

Abstract

L'architecture répétée et bien compris cellulaire du cervelet en font un système modèle idéal pour explorer la topographie du cerveau. Sous-tend son cytoarchitecture relativement uniforme est un ensemble complexe de domaines parasagittales de gène et l'expression des protéines. Le cloisonnement moléculaire du cervelet est reflétée par l'organisation anatomique et fonctionnelle des fibres afférentes. Pour apprécier pleinement la complexité de l'organisation du cervelet que nous avons déjà une approche affinée coloration wholemount pour l'analyse à haut débit de défauts de structuration dans le cervelet de souris. Ce protocole décrit en détail les réactifs, des outils, et des mesures pratiques qui sont utiles pour réussir à révéler des modèles d'expression de protéines dans le cervelet de souris adulte en utilisant immunomarquage wholemount. Les étapes mis en évidence ici démontrer l'utilité de cette méthode en utilisant l'expression de zebrinII / aldolaseC comme un exemple de la façon dont la topographie fine de la cerveau peut être révélé dans sonnatif conformation tridimensionnelle. Sont également décrits des adaptations apportées au protocole qui permet la visualisation de l'expression des protéines dans les projections afférentes et cervelets grande pour des études comparatives de la topographie moléculaire. Pour illustrer ces applications, les données de coloration afférente du cervelet de rat sont inclus.

Protocol

1. Perfusion des animaux et de dissection Cervelet Fonction de la protéine, la perfusion peut être essentiel pour 1,2 coloration réussie. Perfusion transcardiaque est un invasive, non-survie procédure qui exige l'utilisation appropriée d'anesthésiques. Une formation correcte, l'approbation institutionnelle, et l'approbation du IACUC sont toutes nécessaires avant de tenter la procédure. Il ya toujours une bonne idée de consulter des vétérinaires de l'institution à obt…

Discussion

Nous avons décrit les détails techniques nécessaires pour la coloration wholemount succès en utilisant une approche polyvalente immunohistochimique pour l'expression des protéines dans le cerveau révélateur en développement et les adultes. En utilisant cette approche, des motifs complexes moléculaires d'expression peut être analysée et la topographie du cerveau apprécié sans la nécessité de laborieuses et consommatrices de temps les procédures de sectionnement des tissus.

<p class="jove_conte…

Declarações

The authors have nothing to disclose.

Acknowledgements

RVS est pris en charge par l'enquêteur nouvelle fonds de démarrage d'Albert Einstein College of Medicine de l'Université Yeshiva.

Materials

Materials Function in protocol
Perfusion pump (Fisher Scientific/13-876-2) Allows for consistent and slow perfusion.
Sharp-tip Scissors (FST/14081-08) General use in perfusion and dissection.
Blunt-tip Forceps (FST/91100-12) To stabilize the heart for insertion of the perfusion needle.
Forceps (FST by Dumont AA/11210-10) For use during dissection of the brain from the skull and to separate the cerebellum from the rest of the brain. These are essential because they have a slightly rounded tip that helps minimize damage to the cerebellum during dissection.
Nutator (Fisher Scientific) Used to keep tissue in motion during incubation periods. 
1.5 mL tube (Sarstedt/Screw Cap Micro Tube) All steps of the histochemistry protocol take place in these microtubes. The rounded bottom ensures that the cerebellum stays in motion. 
Perforated spoon (FST/10370-17) Used to keep wholemounts in the microtubes while gently decanting out the spent solution.
Leica MZ16 FA microscope Used to examine wholemount staining.
Leica DFC3000 FX camera Used to capture wholemount images.

Table 1.

Example calendar for a typical wholemount experiment
Day 1 Dent’s fix, room temperature, 8 hrs Dent’s bleach, 4°C, overnight
Day 2 100% MeOH, room temperature, 2x, 30 min each 100% MeOH, Freeze/thaw,
4x, 30 min/15 min
100% MeOH, -80°C, overnight
Day 3 50% MeOH/50% PBS, room temperature, 60-90 min 15% MeOH/ 85% PBS, room temperature, 60-90 min 100% PBS, room temperature, 60-90 min 10μg/mL Proteinase K in PBS, room temperature, 2-3 min 100% PBS, room temperature, 3x, 10 min each PMT, 4°C, overnight
Day 4-5 PMT + 1° antibody + 5% DMSO, 4°C, 48 hrs
Day 6 PMT, 4°C, 2-3x, 2-3 hrs each PMT + 2° antibody + 5% DMSO, 4°C, 24 hours (Or begin amplification steps with ABC complex)
Day 7 PMT, 4°C, 2-3x, 2-3 hrs each PBT, room temperature, 2 hrs Incubate in fresh DAB in PBS until optimal staining is visualized

Table 2.

Recipes (*=prepare fresh every time)
PBS (phosphate buffered saline) 0.1M phosphate buffered saline in deionized water. pH 7.2 (Sigma tablets; P4417)
PFA (Paraformaldehyde) Made and stored frozen as a 20% solution and then diluted to 4% in PBS for the working solution (Fisher Scientific; T353)
Dent’s Fixative3* 4 parts methanol
1 part dimethylsulfoxide (DMSO; Fisher Scientific; D159-4)
Dent’s Bleach3* 4 parts methanol
1 part dimethylsulfoxide (DMSO; Fisher Scientific; D159-4)
1 part 30% hydrogen peroxide
Enzymatic Digestion 10 μg/ml of Proteinase K (Roche Diagnostics; 03115828001) in PBS.
PBST PBS containing:
0.1% Tween-20 (Fisher Scientific, BP337; Triton can also be used in place of Tween-20 in all instances.)
PMT25* PBS containing:
2% nonfat skim milk powder (Carnation preferred)
0.1% Tween-20 (Fisher Scientific; BP337)
PBT25* PBS containing:
0.2% bovine serum albumin (Sigma; B9001S)
0.1% Tween-20 (Fisher Scientific; BP337)
DAB* Dissolve one 10-mg tablet of 3,3-diaminobenzidine (Sigma-Aldrich; D5905) in 40 ml of PBS. Add 10 μl of 30% hydrogen peroxide to initiate reaction).
ABC Complex Solution Vectastain kit (Vector laboratories, Inc; PK-4000)

Table 3.

Referências

  1. Sillitoe, R. V., Hawkes, R. Whole-mount Immunohistochemistry: A high-throughput screen for patterning defects in the mouse cerebellum. J. Histochem. Cytochem. 50, 235-244 (2002).
  2. Kim, S. -. H., Che, P., Chung, S. -. H., Doorn, D., Hoy, M., Larouche, M., Marzban, H., Sarna, J., Zahedi, S., Hawkes, R. Whole-Mount Immunohistochemistry of the Brain. Current Protocols in Neuroscience. , (2006).
  3. Dent, J. A., Polson, A. G., Klymkowsky, M. W. A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus. Development. 105, 61-74 (1989).
  4. Sillitoe, R. V., Malz, C. R., Rockland, K., Hawkes, R. Antigenic compartmentation of the primate and tree shrew cerebellum: a common topography of zebrin II in Macaca mulatta and Tupaia belangeri. J. Anat. 204, 257-269 (2004).
  5. Ozol, K., Hayden, J. M., Oberdick, J., Hawkes, R. Transverse zones in the vermis of the mouse cerebellum. J. Comp. Neurol. 412, 95-111 (1999).
  6. Apps, R., Hawkes, R. Cerebellar cortical organization: a one-map hypothesis. Nat. Rev. Neurosci. 10, 670-681 (2009).
  7. Reeber, S. L., Sillitoe, R. V. Patterned expression of a cocaine- and amphetamine-regulated transcript peptide reveals complex circuit topography in the rodent cerebellar cortex. J. Comp. Neurol. 519, 1781-1796 (2011).
  8. Sarna, J. R., Marzban, H., Watanabe, M., Hawkes, R. Complementary stripes of phospholipase Cbeta3 and Cbeta4 expression by Purkinje cell subsets in the mouse cerebellum. J. Comp. Neurol. 496, 303-313 (2006).
  9. Demilly, A., Reeber, S. L., Gebre, S. A., Sillitoe, R. V. Neurofilament heavy chain expression reveals a unique parasagittal stripe topography in the mouse cerebellum. Cerebellum. 10, 409-421 (2011).
  10. Larouche, M., Hawkes, R. From clusters to stripes: the developmental origins of adult cerebellar compartmentation. Cerebellum. 5, 77-88 (2006).
  11. Marzban, H., Chung, S., Watanabe, M., Hawkes, R. Phospholipase Cbeta4 expression reveals the continuity of cerebellar topography through development. J. Comp. Neurol. 502, 857-871 (2007).
  12. Blank, M. C., Grinberg, I., Aryee, E., Laliberte, C., Chizhikov, V. V., Henkelman, R. M., Millen, K. J. Multiple developmental programs are altered by loss of Zic1 and Zic4 to cause Dandy-Walker malformation cerebellar pathogenesis. Development. 138, 1207-1216 (2011).
  13. Sawada, K., Sakata-Haga, H., Fukui, Y. Alternating array of tyrosine hydroxylase and heat shock protein 25 immunopositive Purkinje cell stripes in zebrin II-defined transverse zone of the cerebellum of rolling mouse. Nagoya. Brain Res. 1343, 46-53 (2010).
  14. Sawada, K., Fukui, Y., Hawkes, R. Spatial distribution of corticotropin-releasing factor immunopositive climbing fibers in the mouse cerebellum: Analysis by whole mount immunohistochemistry. Brain Res. 1222, 106-117 (2008).
  15. Marzban, H., Hawkes, R. On the architecture of the posterior zone of the cerebellum. Cerebellum. 10, 422-434 (2011).
  16. Pakan, J. M., Graham, D. J., Wylie, D. R. Organization of visual mossy fiber projections and zebrin expression in the pigeon vestibulocerebellum. J. Comp. Neurol. 518, 175-198 (2010).
  17. Iwaniuk, A. N., Marzban, H., Pakan, J. M., Watanabe, M., Hawkes, R., Wylie, D. R. Compartmentation of the cerebellar cortex of hummingbirds (Aves: Trochilidae) revealed by the expression of zebrin II and phospholipase C beta 4. J. Chem. Neuroanat. 37, 55-63 (2009).
  18. Sarna, J. R., Larouche, M., Marzban, H., Sillitoe, R. V., Rancourt, D. E., Hawkes, R. Patterned Purkinje cell degeneration in mouse models of Niemann-Pick type C disease. J. Comp. Neurol. 456, 279-291 (2003).
  19. Sarna, J. R., Hawkes, R. Patterned Purkinje cell loss in the ataxic sticky mouse. Eur. J. Neurosci. 34, 79-86 (2011).
  20. El-Bizri, N., Guignabert, C., Wang, L., Cheng, A., Stankunas, K., Chang, C. P., Mishina, Y., Rabinovitch, M. SM22alpha-targeted deletion of bone morphogenetic protein receptor 1A in mice impairs cardiac and vascular development, and influences organogenesis. Development. 135, 2981-2991 (2008).
  21. Mondrinos, M. J., Koutzaki, S., Lelkes, P. I., Finck, C. M. A tissue-engineered model of fetal distal lung tissue. Am. J. Physiol. Lung Cell Mol. Physiol. 293, 639-650 (2007).
  22. Coppola, E., Rallu, M., Richard, J., Dufour, S., Riethmacher, D., Guillemot, F., Goridis, C., Brunet, J. F. Epibranchial ganglia orchestrate the development of the cranial neurogenic crest. Proc. Nat. Acad. Sci. 107, 2066-2071 (2010).
  23. Kubilus, J. K., Linsenmayer, T. F. Developmental guidance of embryonic corneal innervation: roles of Semaphorin3A and Slit2. Dev. Biol. 344, 172-184 (2010).
  24. Reeber, S. L., Gebre, S. A., Sillitoe, R. V. Fluorescence mapping of afferent topography in three dimensions. Brain Struct. Funct. 216, 159-169 (2011).
  25. Davis, C. A. Whole-mount immunohistochemistry. Methods Enzymol. 225, 502-516 (1993).

Play Video

Citar este artigo
White, J. J., Reeber, S. L., Hawkes, R., Sillitoe, R. V. Wholemount Immunohistochemistry for Revealing Complex Brain Topography. J. Vis. Exp. (62), e4042, doi:10.3791/4042 (2012).

View Video