Summary

从老鼠肠道树突状细胞和巨噬细胞的分离和表征

Published: May 21, 2012
doi:

Summary

在这里,我们详细介绍了小鼠肠道树突状细胞(DCs)和巨噬细胞的快速分离方法。使用多色流式细胞仪分析细胞分选磁珠富集而被用来产生高纯度的功能研究人口肠道DC和巨噬细胞的表型特征。

Abstract

肠道内居住的是参与对共生的植物和食物抗原在促进容忍,而随之而来的剩余准备安装的炎症反应,病原体侵入朝1,2先天免疫和适应性免疫细胞的独特群体。抗原提呈细胞,特别是区议会和巨噬细胞,发挥关键作用,在肠道免疫稳态维持通过自己的能力感和妥善应对微生物3-14。肠道DC和巨噬细胞的高效分离是在描述这些细胞的表型和功能的关键一步。虽然隔离肠道免疫细胞,包括区议会和巨噬细胞,许多有效的方法已6,10,15-24,许多依靠长期的消化时间,可能会产生负面影响细胞表面抗原的表达,细胞活力,和/或细胞产量。在这里,我们详细介绍快速分离的大量viabl的一种方法E,肠区议会和巨噬细胞。肠道DC和巨噬细胞的表型特征进行了直接染色孤立的肠细胞与特定的荧光标记单克隆抗体多色流式细胞仪分析。此外,高纯度的DC和巨噬细胞群体隔离功能的研究,利用CD11c和CD11b的磁激活细胞分选,细胞分选微珠。

Protocol

1。肠上皮细胞的解剖和离解制备的试剂和设备: 温暖的Ca 2 + /镁2 +无PBS(CMF的PBS)的室温。 温暖的Ca 2 + / Mg 2 +的免费的HBSS 5%胎牛血清(CMF方案的HBSS / FBS),和2mM EDTA室温。 温暖的轨道摇床至37°C。 注:步骤1.1至1.7,必须尽快进行,以尽量减少细胞死亡的程度,并实现最大的细胞?…

Discussion

图3
图3。直接组织消化时间的影响因素,重要的细胞产量和表面抗原表达的优化。细胞产量和表面抗原表达,胶原酶的具体特点,组织切碎程度,以及存在或炎症的情况下,这可能会影响组织的完整性和细胞结构。长期组织消化,可能会导致细胞活力下降和表面抗原的表达,同时组织消化不足可能会导致在分析细胞缺乏。

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢亚伦RAE(埃默里大学儿科和儿童医疗亚特兰大流核心),细胞分选。这项工作是由NIH资助AA01787001,从克隆氏病及溃疡性结肠炎美国基金会事业发展奖,和埃默里Egleston儿童研究中心种子批支持到顶级域名(TLD)

Materials

Name of the Reagent Company Catalogue number Comments
1X PBS, Ca2+– and Mg2+-free      
Hank’s balanced salt solution (HBSS) with phenol red Fisher Scientific SH3001603  
Sodium bicarbonate Sigma S6014  
1M HEPES in 0.85% NaCl Lonza 17-737E  
Fetal bovine serum (FBS) Atlanta biologicals S11150H Heat-inactivated
0.5M EDTA (pH 8.0) Cellgro 46-034-CI  
Collagenase type VIII Sigma C2139  
DNase I Roche 14785000 Stock solution: 100mg/ml
LIVE/DEAD Fixable Aqua Dead Cell Stain Kit for 405 nm excitation Invitrogen L34957 Use at 1:1000
CD45-PerCP mAb (30F11) BD 557235 Use at 1:100
CD103-PE mAb (M290) BD 557495 Use at 1:100
FcγRIII/II mAb (2.4G2) BD 553141 Use at 1:200
CD11c-APC mAb (N418) eBioscience 17-0114-82 Use at 1:100
MHC-II (I-Ab)-Alexa Fluor 700 mAb eBioscience 56-5321-82 Use at 1:100
CD11b-eFluor 450 mAb (M1/70) eBioscience 48-0112-82 Use at 1:200
F4/80-PE-Cy7 mAb (BM8) eBioscience 25-4801-82  
CD11b microbeads Miltenyi Biotec 130-049-601  
CD11c microbeads Miltenyi Biotec 130-052-001  
50 mL conical tubes BD Falcon 352098  
Single mesh wire strainer Chefmate    
Small weigh boat Fisher Scientific 08-732-116  
100 μm cell strainer BD Falcon 352360  
40 μm cell strainer BD Falcon 352340  
5 mL polystyrene round-bottom tubes BD Falcon 352235 Use at 1:100
MaxQ 4450 benchtop orbital shaker Thermo Scientific    
LS MACS column Miltenyi Biotec 130-042-401  
LSR II BD    
FACSAria II BD    

Referências

  1. Maloy, K. J., Powrie, F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature. 474, 298-306 (2011).
  2. Nagler-Anderson, C., Terhoust, C., Bhan, A. K., Podolsky, D. K. Mucosal antigen presentation and the control of tolerance and immunity. Trends Immunol. 22, 120-122 (2001).
  3. Abraham, C., Medzhitov, R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology. 140, 1729-1737 (2011).
  4. Macdonald, T. T., Monteleone, I., Fantini, M. C., Monteleone, G. Regula tine. Gastroenterology. 140, 1768-1775 (2011).
  5. Rescigno, M. Intestinal dendritic cells. Adv. Immunol. 107, 109-138 (2010).
  6. Platt, A. M., Bain, C. C., Bordon, Y., Sester, D. P., Mowat, A. M. An independent subset of TLR expressing CCR2-dependent macrophages promotes colonic inflammation. J. Immunol. 184, 6843-6854 (2010).
  7. Coombes, J. L., Powrie, F. Dendritic cells in intestinal immune regulation. Nat. Rev. Immunol. 8, 435-446 (2008).
  8. Kelsall, B. Recent progress in understanding the phenotype and function of intestinal dendritic cells and macrophages. Mucosal Immunol. 1, 460-469 (2008).
  9. Pulendran, B., Tang, H., Denning, T. L. Division of labor, plasticity, and crosstalk between dendritic cell subsets. Curr. Opin. Immunol. 20, 61-67 (2008).
  10. Denning, T. L., Wang, Y. C., Patel, S. R., Williams, I. R., Pulendran, B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol. 8, 1086-1094 (2007).
  11. Niess, J. H. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science. 307, 254-258 (2005).
  12. Milling, S. W., Cousins, L., MacPherson, G. G. How do DCs interact with intestinal antigens. Trends Immunol. 26, 349-352 (2005).
  13. Bilsborough, J., Viney, J. L. Gastrointestinal dendritic cells play a role in immunity, tolerance, and disease. Gastroenterology. 127, 300-309 (2004).
  14. Stagg, A. J., Hart, A. L., Knight, S. C., Kamm, M. A. The dendritic cell: its role in intestinal inflammation and relationship with gut bacteria. Gut. 52, 1522-1529 (2003).
  15. Medina-Contreras, O. CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice. J. Clin. Invest. 121, 4787-4795 (2011).
  16. Denning, T. L. Functional Specializations of Intestinal Dendritic Cell and Macrophage Subsets That Control Th17 and Regulatory T Cell Responses Are Dependent on the T Cell/APC Ratio, Source of Mouse Strain, and Regional Localization. J. Immunol. , 187-733 (2011).
  17. Kim, Y. G. The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity. 34, 769-780 (2011).
  18. Schulz, O. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 206, 3101-3114 (2009).
  19. Jaensson, E. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J. Exp. Med. 205, 2139-2149 (2008).
  20. Uematsu, S. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat. Immunol. 9, 769-776 (2008).
  21. Schenk, M., Bouchon, A., Seibold, F., Mueller, C. TREM-1–expressing intestinal macrophages crucially amplify chronic inflammation in experimental colitis and inflammatory bowel diseases. J. Clin. Invest. 117, 3097-3106 (2007).
  22. Sun, C. M. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775-1785 (2007).
  23. Kamada, N. Abnormally differentiated subsets of intestinal macrophage play a key role in Th1-dominant chronic colitis through excess production of IL-12 and IL-23 in response to bacteria. J. Immunol. 175, 6900-6908 (2005).
  24. Denning, T. L. CD4+ Th cells resembling regulatory T cells that inhibit chronic colitis differentiate in the absence of interactions between CD4 and class II MHC. J. Immunol. 171, 2279-2286 (2003).
check_url/pt/4040?article_type=t

Play Video

Citar este artigo
Geem, D., Medina-Contreras, O., Kim, W., Huang, C. S., Denning, T. L. Isolation and Characterization of Dendritic Cells and Macrophages from the Mouse Intestine. J. Vis. Exp. (63), e4040, doi:10.3791/4040 (2012).

View Video