Summary

神经元的初步培养体系的研究疱疹病毒潜伏期和活化

Published: April 02, 2012
doi:

Summary

协议描述了一种高效和可重复性的模型系统研究单纯疱疹病毒1型(HSV-1)延迟和重新启动。该法采用同质交感神经神经元文化,并允许使用各种工具,包括RNA干扰和重组蛋白表达的病毒神经元相互作用的分子解剖。

Abstract

单纯疱疹病毒1型(HSV-1)建立终身潜伏感染在周边神经元。这种潜在的水库是经常激活事件的源,确保传输和临床疾病作出贡献。目前的抗病毒药物不影响潜在的水库,有没有疫苗。而裂解复制的分子细节是良好的特点,在神经元的延迟控制机制仍然是难以捉摸的。我们目前所知的延迟是来自于体内研究使用小动物模型,并已确定病毒基因的要求和免疫反应的作用是不可或缺的。然而,这是无法区分病毒神经元的关系,从更一般的感染,在活的动物免疫或支持非神经细胞介导的​​后果的具体影响。此外,动物实验是昂贵,费时,并在有限的可用选项的操作主机流程。为了克服这些限制,只有一个神经元系统的迫切需要,抄录在体内的潜伏期和活化的特点,但在同质化和无障碍方面提供了组织文化的好处。

在这里,我们提出利用体外原代培养大鼠颈上神经节(SCG)( 图1)交感神经元模型,研究HSV-1的延迟和重新启动,适合大多数如果不是所有所需的标准。消除非神经细胞后,近同质TrkA的神经元文化与HSV-1感染中存在阿昔洛韦(ACV)的抑制裂解复制。以下阿昔洛韦去除,非生产的HSV-1感染的忠实表现出延迟接受的特点是有效建立。值得注意的是,裂解基因,蛋白质,传染性病毒成为不到,即使在没有选择的情况下,但潜伏相关转录(LAT),快递离子在神经元细胞核坚持。病毒的基因组都保持在25%神经元的平均拷贝数,可以诱导高效复制干扰与PI3激酶/ Akt信号或神经生长因子1的简单撤出。重组HSV-1编码EGFP的融合病毒裂解蛋白Us11提供的复制功能,实时的标记从激活,很容易量化。除了化学处理,如RNA干扰或基因通过慢病毒载体传递基因的方法,可以成功地应用于系统允许是非常困难的,如果不是不可能的,在动物的机理研究。总之,在SCG基于HSV-1的延迟/激活系统提供了一个强大的,必要的工具来解开单纯疱疹病毒潜伏期和活化在神经元,在病毒学的长期难题的解决方案,可提供新的见解,新疗法的开发控制的分子机制目标t他潜伏的疱疹病毒水库。

Protocol

1。从大鼠胚胎SCG神经元的分离和培养 提供有用的背景下,为了解该协议建立的早期文学的全面讨论,上海建工神经元培养方法,包括在体外培养,涂层板,基板,无血清培养基的成分SCG的基础上,读者可以参考参考2-4。 按照NIH的指引下进行的机构动物照顾及使用委员会 (IACUC)批准了一项活动的协议,利用大鼠SCG神经元来源。 前开始清?…

Discussion

主要神经文化和感染系统提供了一个简单而有效的方法来探讨HSV-1潜伏期和活化的分子机制。该系统忠实地概括公认的标志,在人类的感染和在活的动物模型中定义的延迟。当病毒潜伏在SCG的文化,传染性颗粒和病毒裂解基因产物不能被检测出来。在潜伏感染神经细胞的检测是唯一的病毒基因产物的土地增值税的成绩单,非编码核内积累。激活恰逢病毒裂解基因表达和传染性颗粒生…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢他们周到的建议,有助于改善这个手稿的评论。 MVC(NS21072,HD23315)的ACW(GM61139,S10RR017970)和IM(AI073898,GM056927)从美国国立卫生研究院的赠款,以支持这项工作。旺角是支持部分由美国国立卫生研究院培训资助(5T32 AI007180)。

Materials

Reagent Company Catalog# Comments
70μm nylon filter( cell strainer) BD Biosciences 352350  
1x Hank’s Balanced Salt Solution (HBSS-/-) Invitrogen 14175 w/o CaCl2 and MgCl2
1x Minimum Essential Media (MEM) Invitrogen 11095-080  
5-Fluoro-2′-deoxyuridine Sigma F0503 prepare 20 mM stock in 1x MEM; store at -20°C
96-well flat well bottom TC plates Corning 3599  
Acyclovir Calbiochem 114798 prepare 31 mM stock in DMSO; store at -20°C
Aphidicolin Calbiochem 178273 prepare 10 mM stock in DMSO; store at -20°C
B-27 Supplement Invitrogen 17504-44  
Collagenase Sigma C2674 prepare 10 mg/ml stock in HBSS-/-; store at -20°C
D-(+)-Glucose Sigma G6152 prepare 40% stock in H2O; filter sterilize & store at 4°C
L-Glutamine Invitrogen 25030-081  
Laminin Sigma L2020 prepare 1 mg/ml stock in H2O; quick-freeze 20 μl aliquats & store at -80°C; dilute to 2 μg/ml working conc. in sterile H2O
Leibovit’z L-15 media Invitrogen 11415  
Nerve Growth Factor Harlan Laboratories BT.5017 prepare 50 μg/ml stock in HBSS-/-; store at -80°C
Neurobasal medium Invitrogen 12348  
Phosphonoacetic acid (PAA) Sigma P6909 prepare 75 mg/ml stock in H2O; store at -20°C
Poly-D-lysine hydrobromide Sigma P0899 prepare 20 mg/ml stock in H2O; store at -20°C
Rat-tail collagen Millipore 08-115 Concentration varies with supply lot; store at 4°C and dilute to 0.66 mg/ml working conc. in sterile H2O
Trichostatin A Sigma T8552 prepare 1 mM stock in DMSO; store at -20°C
Trypsin 2.5% Invitrogen 15090-04  

Referências

  1. Camarena, V., Kobayashi, M., Kim, J. Y., Roehm, P., Perez, R., Gardner, J., Wilson, A. C., Mohr, I., Chao, M. V. Nature and duration of growth factor signaling through receptor tyrosine kinases regulates HSV-1 latency in neurons. Cell Host & Microbe. 8, 320-330 (2010).
  2. Johnson, M. I., Fedoroff, S., Richardson, A. Primary cultures of sympathetic ganglia. Protocols for Neural Cell Culture. , 71-94 (2001).
  3. Letourneau, P. C., Fedoroff, S., Richardson, A. Preparation of substrata for in vitro culture of neurons. Protocols for Neural Cell Culture. , 245-254 (2001).
  4. Price, J. P., Brewer, G. J., Fedoroff, S., Richardson, A. Serum-free media for neural cell cultures. Protocols for Neural Cell Culture. , 255-264 (2001).
  5. Flint, S. J., Enquist, L. W., Racaniello, V. R., Skalka, A. M. . Principles of virology. , (2008).
  6. Roizman, B., Pellett, P. E., Knipe, D. M., Howley, P. M. The family Herpesviridae: A brief introduction. Fields Virology. 2, 2381-2397 (2001).
  7. Price, R. W., Rubenstein, R., Khan, A. Herpes simplex virus infection of isolated autonomic neurons in culture: viral replication and spread in a neuronal network. Arch. Virol. 71, 127-140 (1982).
  8. Tomishima, M. J., Enquist, L. W. A conserved alpha-herpesvirus protein necessary for axonal localization of viral membrane proteins. J. Cell Biol. 154, 741-752 (2001).
  9. Ch’ng, T. H., Flood, E. A., Enquist, L. W. Culturing primary and transformed neuronal cells for studying pseudorabies virus infection. Methods Mol. Biol. 292, 299-316 (2005).
  10. Wang, F., Tang, W., McGraw, H. M., Bennett, J., Enquist, L. W., Friedman, H. M. Herpes simplex virus type 1 glycoprotein E is required for axonal localization of capsid, tegument, and membrane glycoproteins. J. Virol. 79, 13362-13372 (2005).
  11. Benboudjema, L., Mulvey, M., Gao, Y., Pimplikar, S. W., Mohr, I. Association of the herpes simplex virus type 1 us11 gene product with the cellular kinesin light-chain-related protein PAT1 results in the redistribution of both polypeptides. J. Virol. 77, 9192-9203 (2003).
  12. Blaho, J., Morton, E. R., Yedowitz, J. C. Herpes simplex virus: propagation, quantification and storage. Curr. Protoc. Microbiol. Chapter 14, Unit 14E.1 (2005).
  13. Van Zeijl, M., Fairhurst, J., Jones, T. R., Vernon, S. K., Morin, J., LaRocque, J., Feld, B. L., O’Hara, B. L., Bloom, J. D., Johann, S. V. Novel class of thiourea compounds that inhibit herpes simplex virus type 1 DNA cleavage and encapsidation: resistance maps to the UL6 gene. J. Virol. 74, 9054-9061 (2000).
  14. Newcomb, W. W., Brown, J. C. Inhibition of herpes simplex virus replication by WAY-150138: assembly of capsids depleted of the portal and terminase proteins involved in DNA encapsidation. J. Virol. 76, 10084-10088 (2002).
  15. Pesola, J. M., Zhu, J., Knipe, D. M., Coen, D. M. Herpes simplex virus 1 immediate-early and early gene expression during reactivation from latency under conditions that prevent infectious virus production. J. Virol. 79, 4516-14525 (2005).
  16. Arthur, J. L., Scarpini, C. G., Connor, V., Lachmann, R. H., Tolkovsky, A. M., Efstathiou, S. Herpes simplex virus type 1 promoter activity during latency establishment, maintenance and reactivation in primary dorsal root neurons in vitro. J. Virol. 75, 3885-3895 (2001).
  17. Danaher, R. J., Jacob, R. J., Steiner, M. R., Allen, W. R., Hill, J. M., Miller, C. S. Histone deacetylase inhibitors induce reactivation of herpes simplex virus type 1 in a latency-associated transcript- independent manner in neuronal cells. J. Neurovirol. 11, 306-317 (2005).
  18. Terry-Allison, T., Smith, C. A., DeLuca, N. A. Relaxed repression of herpes simplex virus type 1 genomes in murine trigenminal neurons. J. Virol. 71, 12394-12405 (2007).
  19. Harris, R. A., Preston, C. M. Establishment of latency in vitro by the herpes virus type 1 mutant in1918. J. Gen. Virol. 72, 907-913 (1991).
  20. Wagner, E. K., Bloom, D. C. Experimental investigation of herpes simplex virus latency. Clin. Microbiol. Rev. 10, 419-443 (1997).
  21. Strelow, L. I., Laycock, K. A., Jun, P. Y., Rader, K. A., Brady, R. H., Miller, J. K., Pepose, J. S., Leib, D. A. A structural and functional comparison of the latency-associated transcript promoters of herpes simplex virus type 1 strains KOS and McKrae. J. Gen Virol. 75, 2475-2480 (1994).
  22. Stroop, W. G., Banks, M. C. Herpes simplex virus type 1 strain KOS-63 does not cause acute or recurrent ocular disease and does not reactivate ganglionic latency in vivo. Acta Neuropathol. 87, 14-22 (1994).
  23. Sawtell, N. M., Poon, D. K., Tansky, C. S., Thompson, R. L. The latent herpes simplex virus type 1 genome copy number in individual neurons is virus strain specific and correlates with reactivation. J. Virol. 72, 5343-5350 (1998).
  24. Thompson, R. L., Cook, M. L., Devi-Rao, G., Wagner, E. K., Stevens, J. G. Functional and molecular analysis of the avirulent wild-type herpes simplex virus type 1 strain KOS. J. Virol. 58, 203-211 (1986).
  25. Wilcox, C. L., Smith, R. L., Freed, C. R., Johnson, E. M. Nerve growth factor-dependence of herpes simplex virus latency in peripheral sympathetic and sensory neurons in vitro. J. Neurosci. 10, 1268-1275 (1990).
  26. Roehm, P. C., Camarena, V., Gardner, J. B., Wilson, A. C., Mohr, I., Chao, M. V. Cultured vestibular ganglion neurons demonstrate latent herpes simplex type I reactivation. Laryngoscope. 121, 2268-2275 (2011).
  27. Kuhn, M. A., Nayak, S., Camarena, V., Gardner, J., Wilson, A., Mohr, I., Chao, M. V., Roehm, P. C. A cell culture model of facial palsy resulting from reactivation of latent herpes simplex virus type 1. Otology & Neurotology. , (2012).
check_url/pt/3823?article_type=t

Play Video

Citar este artigo
Kobayashi, M., Kim, J., Camarena, V., Roehm, P. C., Chao, M. V., Wilson, A. C., Mohr, I. A Primary Neuron Culture System for the Study of Herpes Simplex Virus Latency and Reactivation. J. Vis. Exp. (62), e3823, doi:10.3791/3823 (2012).

View Video