Summary

संस्कृति डिश में एक कार्यात्मक मोटर यूनिट: स्पाइनल कॉर्ड explants और मांसपेशियों की कोशिकाओं के सह संस्कृति

Published: April 12, 2012
doi:

Summary

सुसंस्कृत मांसपेशी कोशिकाओं को एक अपर्याप्त मॉडल innervated मांसपेशी पुनरावृत्ति करना<em> Vivo में</em>. एक कार्यात्मक मोटर इकाई reproduced किया जा सकता है<em> इन विट्रो में</em> विभेदित मानव प्राथमिक मांसपेशी कोशिकाओं चूहे भ्रूण रीढ़ की हड्डी explants का उपयोग स्फूर्तिदान से. यह आलेख वर्णन करता है कि रीढ़ की हड्डी explants और मांसपेशियों की कोशिकाओं के सह संस्कृतियों में स्थापित कर रहे हैं.

Abstract

Human primary muscle cells cultured aneurally in monolayer rarely contract spontaneously because, in the absence of a nerve component, cell differentiation is limited and motor neuron stimulation is missing1. These limitations hamper the in vitro study of many neuromuscular diseases in cultured muscle cells. Importantly, the experimental constraints of monolayered, cultured muscle cells can be overcome by functional innervation of myofibers with spinal cord explants in co-cultures.

Here, we show the different steps required to achieve an efficient, proper innervation of human primary muscle cells, leading to complete differentiation and fiber contraction according to the method developed by Askanas2. To do so, muscle cells are co-cultured with spinal cord explants of rat embryos at ED 13.5, with the dorsal root ganglia still attached to the spinal cord slices. After a few days, the muscle fibers start to contract and eventually become cross-striated through innervation by functional neurites projecting from the spinal cord explants that connecting to the muscle cells. This structure can be maintained for many months, simply by regular exchange of the culture medium.

The applications of this invaluable tool are numerous, as it represents a functional model for multidisciplinary analyses of human muscle development and innervation. In fact, a complete de novo neuromuscular junction installation occurs in a culture dish, allowing an easy measurement of many parameters at each step, in a fundamental and physiological context.

Just to cite a few examples, genomic and/or proteomic studies can be performed directly on the co-cultures. Furthermore, pre- and post-synaptic effects can be specifically and separately assessed at the neuromuscular junction, because both components come from different species, rat and human, respectively. The nerve-muscle co-culture can also be performed with human muscle cells isolated from patients suffering from muscle or neuromuscular diseases3, and thus can be used as a screening tool for candidate drugs. Finally, no special equipment but a regular BSL2 facility is needed to reproduce a functional motor unit in a culture dish. This method thus is valuable for both the muscle as well as the neuromuscular research communities for physiological and mechanistic studies of neuromuscular function, in a normal and disease context.

Protocol

1. प्राथमिक मानव मांसपेशी सेल संस्कृति की तैयारी Explantation पुनः – explantation 4 तकनीक के अनुसार मानव मांसपेशी सेल संस्कृतियों की स्थापना. सबसे पहले, बायोप्सी से गैर मांसपेशियों के ऊतकों को हटा दें. फिर, प्ला?…

Discussion

एक शारीरिक सामान्य और रोग के संदर्भ में अध्ययन मांसपेशी कोशिका समारोह में इन विट्रो उपकरण myologists के लिए सबसे अधिक ब्याज की है, क्योंकि मांसपेशी सेल संस्कृतियों को आम तौर पर कई कोशिकाओं और सेल प्रकार क…

Declarações

The authors have nothing to disclose.

Acknowledgements

हमारा काम स्विस राष्ट्रीय विज्ञान फाउंडेशन (एसएनएफ), सिस्टम जीवविज्ञान (SystemsX.ch), पेशी Dystrophy एसोसिएशन (एमडीए) के संयुक्त राज्य अमेरिका, एसोसिएशन Française contre लेस myopathies (AFM), संयुक्त Mitochondrial रोग फाउंडेशन में स्विस पहल द्वारा समर्थित है (UMDF), फाउंडेशन Gebert – RUF दुर्लभ रोगों (GRF) के कार्यक्रम, स्नायु रोग (सूचना / SSEM FSRMM), स्विस जीवन Jubiläumsstiftung फर Volksgesundheit und Medizinische Forschung, रॉश रिसर्च फाउंडेशन और विश्वविद्यालय के अनुसंधान के लिए स्विस सोसायटी बास्ले.

Materials

Name of reagent Company Catalog Number
HBSS Gibco/Invitrogen 14170
MEM Gibco/Invitrogen 31095
Medium 199 Gibco/Invitrogen 31153
Fetal Bovine Serum Fetal Clone Perbio SH30066.03
Insuline Sigma I9278
Human EGF Sigma E9644
Human FGF Sigma F0291
Penicillin/streptomycin solution Gibco 15140

Referências

  1. Delaporte, C., Dautreaux, B., Fardeau, M. Human myotube differentiation in vitro in different culture conditions. Biol. Cell. 57, 17-22 (1986).
  2. Kobayashi, T., Askanas, V., Engel, W. K. Human muscle cultured in monolayer and cocultured with fetal rat spinal cord: importance of dorsal root ganglia for achieving successful functional innervation. J. Neurosci. 7, 3131-3141 (1987).
  3. Braun, S., Croizat, B., Lagrange, M. C., Warter, J. M., Poindron, P. Constitutive muscular abnormalities in culture in spinal muscular atrophy. Lancet. 345, 694-695 (1995).
  4. Askanas, V., Engel, W. K. A new program for investigating adult human skeletal muscle grown aneurally in tissue culture. Neurology. 25, 58-67 (1975).
  5. Guettier-Sigrist, S., Coupin, G., Warter, J. M., Poindron, P. Cell types required to efficiently innervate human muscle cells in vitro. Exp. Cell Res. 259, 204-212 (2000).
  6. Lefebvre, S. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 80, 155-165 (1995).
  7. Schrank, B. Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc. Natl. Acad. Sci. U.S.A. 94, 9920-9925 (1997).
  8. Hsieh-Li, H. M. A mouse model for spinal muscular atrophy. Nat. Genet. 24, 66-70 (2000).
  9. Monani, U. R. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy. Hum. Mol. Genet. 9, 333-339 (2000).
  10. Sleigh, J. N., Gillingwater, T. H., Talbot, K. The contribution of mouse models to understanding the pathogenesis of spinal muscular atrophy. Dis. Model. Mech. 4, 457-467 (2011).
  11. Durbeej, M., Campbell, K. P. Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models. 12, 349-361 (2002).
  12. Schnabel, J. Neuroscience: Standard model. Nature. 454, 682-685 (2008).
  13. Benatar, M. Lost in translation: treatment trials in the SOD1 mouse and in human ALS. Neurobiol. Dis. 26, 1-13 (2007).
  14. Dorchies, O. M. Normal innervation and differentiation of X-linked myotubular myopathy muscle cells in a nerve-muscle coculture system. Neuromuscul. Disord. 11, 736-746 (2001).
  15. McFerrin, J., Engel, W. K., Askanas, V. Impaired innervation of cultured human muscle overexpressing betaAPP experimentally and genetically: relevance to inclusion-body myopathies. Neuroreport. 9, 3201-3205 (1998).
check_url/pt/3616?article_type=t

Play Video

Citar este artigo
Arnold, A., Christe, M., Handschin, C. A Functional Motor Unit in the Culture Dish: Co-culture of Spinal Cord Explants and Muscle Cells. J. Vis. Exp. (62), e3616, doi:10.3791/3616 (2012).

View Video