Мы опишем, как выполнять ретровирусных или лентивирусов инфекции гиперэкспрессия или shRNA содержащих конструкций в человеческой Рамос B-клеточной линии и как измерить соматических hypermutation в этих клетках.
B cells start their life with low affinity antibodies generated by V(D)J recombination. However, upon detecting a pathogen, the variable (V) region of an immunoglobulin (Ig) gene is mutated approximately 100,000-fold more than the rest of the genome through somatic hypermutation (SHM), resulting in high affinity antibodies1,2. In addition, class switch recombination (CSR) produces antibodies with different effector functions depending on the kind of immune response that is needed for a particular pathogen. Both CSR and SHM are initiated by activation-induced cytidine deaminase (AID), which deaminates cytosine residues in DNA to produce uracils. These uracils are processed by error-prone forms of repair pathways, eventually leading to mutations and recombination1-3.
Our current understanding of the molecular details of SHM and CSR come from a combination of studies in mice, primary cells, cell lines, and cell-free experiments. Mouse models remain the gold standard with genetic knockouts showing critical roles for many repair factors (e.g. Ung, Msh2, Msh6, Exo1, and polymerase η)4-10. However, not all genes are amenable for knockout studies. For example, knockouts of several double-strand break repair proteins are embryonically lethal or impair B-cell development11-14. Moreover, sometimes the specific function of a protein in SHM or CSR may be masked by more global defects caused by the knockout. In addition, since experiments in mice can be lengthy, altering expression of individual genes in cell lines has become an increasingly popular first step to identifying and characterizing candidate genes15-18.
Ramos – a Burkitt lymphoma cell line that constitutively undergoes SHM – has been a popular cell-line model to study SHM18-24. One advantage of Ramos cells is that they have a built-in convenient semi-quantitative measure of SHM. Wild type cells express IgM and, as they pick up mutations, some of the mutations knock out IgM expression. Therefore, assaying IgM loss by fluorescence-activated cell scanning (FACS) provides a quick read-out for the level of SHM. A more quantitative measurement of SHM can be obtained by directly sequencing the antibody genes.
Since Ramos cells are difficult to transfect, we produce stable derivatives that have increased or lowered expression of an individual gene by infecting cells with retroviral or lentiviral constructs that contain either an overexpression cassette or a short hairpin RNA (shRNA), respectively. Here, we describe how we infect Ramos cells and then use these cells to investigate the role of specific genes on SHM (Figure 1).
Как обсуждалось ранее, клеточная линия моделей для антител диверсификации стали популярным отправной точкой для выявления новых белков, которые влияют на различные шаги в процессе антител диверсификации. Мы приведем здесь способ использования вирусной инфекции либо нокдауна или гип…
The authors have nothing to disclose.
PMSCV-AID-I-Thy1.1 и pKat2 векторы были своего рода подарок от Д. Г. Шац и pVSV-G, pRSV-Rev, и pMDLg / pRRE векторы были своего рода подарок от BR Каллен.
Suggested reagents – most of these may be substituted with similar products from other vendors.
Name of the reagent | Company | Catalogue number | Comments |
---|---|---|---|
6-well clear TC-treated plates | Corning | 3516 | |
10 mL BD Luer-Loksyringes | BD Medical | 309604 | |
24-well clear TC-treated plates | Corning | 3526 | |
96-well clear flat bottom polystyrene TC-treated microplates | Corning | 3596 | |
100 mm TC-treated culture dishes | Corning | 430167 | |
Acrodisc syringe filters, 0.45 μm | Pall Life Sciences | 4604 | |
Agar | Teknova | A7777 | |
Agarose | GeneMate | E-3120-500 | |
Ampicillin | Sigma | A0166 | 100 mg/mL in water |
BD FACSCanto II flow cytometer | BD Biosciences | or similar | |
BD Falcon round bottom polystyrene tubes | BD Biosciences | 352054 | for FACS |
BOSC 23 cells | ATCC | CRL-11270 | |
CO2 incubator capable of 37°C | |||
DMEM (Dulbecco′s modified Eagle′s medium) | Sigma | D6429 | |
FBS (fetal bovine serum) | Gemini Bio-Products | 100-106 | |
FITC α-rat CD90/mouse CD90.1 antibody | BioLegend | 202503 | FITC α-Thy1.1 |
FuGENE 6 Transfection Reagent | Roche | 11814443001 | |
HEPES buffer solution | Invitrogen | 15630-080 | |
KAPA HiFi DNA polymerase | KAPA Biosystems | KK2101 | |
LB Broth (lysogeny broth – Luria) Powder | Difco | 240230 | |
MISSION TRC shRNA bacterial glycerol stock | Sigma | shRNA vectors | |
NCS (newborn calf serum) | Gemini Bio-Products | 100-504 | |
PBS (phosphate buffered solution) | Invitrogen | 70011 | diluted to 1x in water |
PE α-human IgM antibody | BioLegend | 314508 | |
PGS (penicillin-streptomycin-glutamine solution) | Gemini Bio-Products | 400-110 | |
Polybrene (hexadimethrine bromide) | Sigma | 107689 | 10 mg/mL in water |
PureYield Plasmid Midiprep System | Promega | A2495 | |
Puromycin | Sigma | P8833 | 250 μg/mL in water |
QIAquick gel extraction kit | QIAGEN | 28706 | |
Ramos (RA 1) cells | ATCC | CRL-1596 | |
RPMI-1640 medium | Sigma | R8758 | |
SuperScript II | Invitrogen | 18064-022 | |
SYBR FAST qPCR kit | KAPA Biosystems | KK4601 | |
Taq DNA Polymerase | Invitrogen | 18038-042 | |
TOPO TA Cloning kit | Invitrogen | K4520-01 | |
TRIzol | Invitrogen | 15596-026 | |
Wizard SV Genomic DNA purification system | Promega | A2361 | |
X-Gal [5-bromo-4-chloro-3-indoyl-β-D-galatopyranoside] | Growcells | C-5687 | 40 mg/mL in DMSO |