Мы описали процедуру разбивки колоректального рака (КРР) для получения жизнеспособных отдельных клеток, которые затем захвачен на индивидуальные микрочипов антител признании поверхностных антигенов (DotScan CRC микрочипов). Суб-популяции клеток, связанных с микрочипов можно профилировать по флуоресценции мультиплексирования с использованием моноклональных антител помеченные флуоресцентными красителями.
The current prognosis and classification of CRC relies on staging systems that integrate histopathologic and clinical findings. However, in the majority of CRC cases, cell dysfunction is the result of numerous mutations that modify protein expression and post-translational modification1.
A number of cell surface antigens, including cluster of differentiation (CD) antigens, have been identified as potential prognostic or metastatic biomarkers in CRC. These antigens make ideal biomarkers as their expression often changes with tumour progression or interactions with other cell types, such as tumour-infiltrating lymphocytes (TILs) and tumour-associated macrophages (TAMs).
The use of immunohistochemistry (IHC) for cancer sub-classification and prognostication is well established for some tumour types2,3. However, no single ‘marker’ has shown prognostic significance greater than clinico-pathological staging or gained wide acceptance for use in routine pathology reporting of all CRC cases.
A more recent approach to prognostic stratification of disease phenotypes relies on surface protein profiles using multiple ‘markers’. While expression profiling of tumours using proteomic techniques such as iTRAQ is a powerful tool for the discovery of biomarkers4, it is not optimal for routine use in diagnostic laboratories and cannot distinguish different cell types in a mixed population. In addition, large amounts of tumour tissue are required for the profiling of purified plasma membrane glycoproteins by these methods.
In this video we described a simple method for surface proteome profiling of viable cells from disaggregated CRC samples using a DotScan CRC antibody microarray. The 122-antibody microarray consists of a standard 82-antibody region recognizing a range of lineage-specific leukocyte markers, adhesion molecules, receptors and markers of inflammation and immune response5, together with a satellite region for detection of 40 potentially prognostic markers for CRC. Cells are captured only on antibodies for which they express the corresponding antigen. The cell density per dot, determined by optical scanning, reflects the proportion of cells expressing that antigen, the level of expression of the antigen and affinity of the antibody6.
For CRC tissue or normal intestinal mucosa, optical scans reflect the immunophenotype of mixed populations of cells. Fluorescence multiplexing can then be used to profile selected sub-populations of cells of interest captured on the array. For example, Alexa 647-anti-epithelial cell adhesion molecule (EpCAM; CD326), is a pan-epithelial differentiation antigen that was used to detect CRC cells and also epithelial cells of normal intestinal mucosa, while Phycoerythrin-anti-CD3, was used to detect infiltrating T-cells7. The DotScan CRC microarray should be the prototype for a diagnostic alternative to the anatomically-based CRC staging system.
В этом видео показано, как DotScan микрочипов антитела могут быть использованы в простых, полуколичественный способ изучения профилей поверхностного антигена для популяции клеток из ткани КПР.
Получение жизнеспособных суспензии отдельных клеток из ткани имеет решающее з…
The authors have nothing to disclose.
Мы благодарим сотрудников Анатомические лаборатории патологии Королевский Принца Альфреда и Согласия Репатриация Больницы для сбора свежих образцов КПР и нормальной слизистой оболочки кишечника. Работа финансировалась института рака Нового Южного Уэльса Поступательное Программа грантов.
Name of reagent or equipment | Company | Catalogue number | Comments |
---|---|---|---|
Hanks’ balanced salt solution | Sigma-Aldrich | H6136-10X1L | Buffered with 25 mM Hepes (Sigma #H3375) |
Airpure biological safety cabinet class II | Westinghouse | 1687-2340/612 | |
Surgical blades | Livingstone | 090609 | Pack of 100 |
RPMI 1640 with 2 mM Hepes | Sigma-Aldrich | R4130-10X1L | |
Collagenase type 4 | Worthington | 4188 | |
Deoxyribonuclease 1 | Sigma-Aldrich | DN25-1G | |
Terumo Syringe (10 mL) | Terumo | SS+10L | Box of 100 |
Filcon filter (200 μm) | BD Biosciences | 340615 | |
Filcon filter (50 μm) | Filcon filter (50 μm) | Filcon filter (50 μm) Filcon filter (50 μm) 340603 | |
Fetal calf serum | Gibco/Invitrogen | 10099-141 | |
Centrifuge 5810 R | Eppendorf | 7017 | |
Dimethyl sulphoxide | Sigma-Aldrich | D2650 | |
Trypan blue | Sigma-Aldrich | T8154 | |
Hemocymeter Technocolor Neubar | Hirschmann | not available | |
Light microscope | Nikon | Nikon TMS | |
Cyrovial tubes | Greiner bio-one | 121278 | |
Cryo freezing contrainer | Nalgene | 5100-0001 | |
DotScan antibody microarray kit | Medsaic | not available | |
DotScan microarray wash tray | Medsaic | not available | |
KimWipes | Kimberly-Clark | 4103 | |
Formaldehyde 37% | Sigma-Aldrich | F1635-500ML | |
DotReaderTM | Medsaic | not available | |
Bovine serum albumin | Sigma-Aldrich | A9418-10G | |
Heat-inactivated AB serum 2% | Invitrogen | 34005100 | |
Phycoerythrin-conjugated CD3 | Beckman Coulter | ET386 | |
AlexaFluor647-conjugated EpCAM | BioLegend | 324212 | |
Typhoon FLA 9000 | GE Healthcare | 28-9558-08 | 532 nm laser, 580 BP30 emission filter for PE. 633 nm laser and 670 BP30 emission filter for Alexa647 |
MultiExperiment Viewer v4.4 | TM4 Microarray Software Suite | Open – source software (Ref 11) |