Метод описан в индивидуальном порядке выбирать, манипулировать, и изображение живых патогенов при оптической ловушки связаны с вращающимся диском микроскопом. Оптической ловушки обеспечивает пространственной и временной контроль организмов и помещает их рядом с клетками хозяина. Люминесцентной микроскопии захватывает динамических межклеточных взаимодействий с минимальным возмущением к клеткам.
Dynamic live cell imaging allows direct visualization of real-time interactions between cells of the immune system1, 2; however, the lack of spatial and temporal control between the phagocytic cell and microbe has rendered focused observations into the initial interactions of host response to pathogens difficult. Historically, intercellular contact events such as phagocytosis3 have been imaged by mixing two cell types, and then continuously scanning the field-of-view to find serendipitous intercellular contacts at the appropriate stage of interaction. The stochastic nature of these events renders this process tedious, and it is difficult to observe early or fleeting events in cell-cell contact by this approach. This method requires finding cell pairs that are on the verge of contact, and observing them until they consummate their contact, or do not. To address these limitations, we use optical trapping as a non-invasive, non-destructive, but fast and effective method to position cells in culture.
Optical traps, or optical tweezers, are increasingly utilized in biological research to capture and physically manipulate cells and other micron-sized particles in three dimensions4. Radiation pressure was first observed and applied to optical tweezer systems in 19705, 6, and was first used to control biological specimens in 19877. Since then, optical tweezers have matured into a technology to probe a variety of biological phenomena8-13.
We describe a method14 that advances live cell imaging by integrating an optical trap with spinning disk confocal microscopy with temperature and humidity control to provide exquisite spatial and temporal control of pathogenic organisms in a physiological environment to facilitate interactions with host cells, as determined by the operator. Live, pathogenic organisms like Candida albicans and Aspergillus fumigatus, which can cause potentially lethal, invasive infections in immunocompromised individuals15, 16 (e.g. AIDS, chemotherapy, and organ transplantation patients), were optically trapped using non-destructive laser intensities and moved adjacent to macrophages, which can phagocytose the pathogen. High resolution, transmitted light and fluorescence-based movies established the ability to observe early events of phagocytosis in living cells. To demonstrate the broad applicability in immunology, primary T-cells were also trapped and manipulated to form synapses with anti-CD3 coated microspheres in vivo, and time-lapse imaging of synapse formation was also obtained. By providing a method to exert fine spatial control of live pathogens with respect to immune cells, cellular interactions can be captured by fluorescence microscopy with minimal perturbation to cells and can yield powerful insight into early responses of innate and adaptive immunity.
В этой работе мы используем оптическую ловушку, чтобы захватить патогенов с размерами от 3 мкм – 5 мкм. Хотя возбудители интерес к нашей лаборатории как правило, эти размеры, оптическая система пинцет, описанный здесь, гибкими, чтобы ловушка большой диапазон размеров. Действительно оптич…
The authors have nothing to disclose.
Эта работа была поддержана Massachusetts General Hospital отделение медицины фонды Внутренняя (СГН, MKM, MLC, JMV), Национальный институт биомедицинской визуализации и биоинженерии грант T32EB006348 (ЦИК), центр Массачусетского общего госпиталя для вычислительной и интегративной фонда развития биологии и AI062773 ( RJH), гранты AI062773, DK83756 и DK 043 351 (RJX), NSF 0643745 (MJL), NIH R21CA133576 (MJL) и Национального института аллергии и инфекционных заболеваний (NIAID) из Национального института здоровья (NIH) AI057999 (JMV ). Мы благодарим Николая С. Йодер за полезные обсуждения, и Чарльз войлок (RPI, Inc) для оказания технической помощи.
Name of the reagent | Company | Catalogue number | Comments (optional) |
---|---|---|---|
A. fumigatus | Albino strain, B-5233/RGD12-8, gift from K.J. Kwon-Chung, NIH | ||
C. albicans | SSY50-B mutant, gift from Eleftherios Mylonakis, MGH; SC5314 strain, gift from Gerald Fink, Whitehead Institute | ||
Alexa Fluor 488 | Invitrogen | A20000 | |
Alexa Fluor 647 | Invitrogen | A20006 | |
dimethylformamide | Sigma | D4551 | |
Fresh blood | Gift from R.J.W. Heath, MGH, HMS | ||
Nikon inverted microscope | Nikon | Model Ti-E | |
Trapping laser, ChromaLase | Blue Sky Research | CLAS-106-STF02-02 | |
Fluorescence excitation laser | Coherent | Model Innova 70C | |
Breadboards for trapping components | Thorlabs | MB1224, MB1218 | |
Optical air table | Technical Manufacturing Corporation | ||
Electronic shutter with pedal control | Uniblitz | Purchased from Vincent Associates, Rochester, NY | |
Singlemode optical fiber | Oz Optics | PMJ-3S3S-1064-6 | |
Fiber positioner | Thorlabs | PAF-X-5-C | |
Fiber collimator | Oz Optics | HPUCO-23-1064-P-25AC | |
Lenses for telescope | Thorlabs | AC254-150-B | Focal length of 150 mm |
Translation stages (x, y, z) | Newport | M-461-XYZ | |
IR dichroic mirror | Chroma | ET750-sp-2p8 | |
Objective lens (100X) | Nikon | NA = 1.49, oil immersion, TIRF objective | |
Confocal head | Yokogawa | CSU-XI | |
Polarizer | Nikon | MEN51941 | |
Wollaston prism | Nikon | MBH76190 | |
EM-CCD camera | Hamamatsu | C9100-13 | |
CCD camera (ORCA ER) | Hamamatsu | C4742-80-12AG | |
Filter wheel | Ludl | 99A353 | |
Filter wheel | Sutter | LB10-NWE | |
Chambered coverglass | Lab-Tek/Nunc | 155409 | |
Dynabeads | Invitrogen | 111-51D | Coated with anti-CD3 |
Dulbecco’s modified Eagle’s medium (DMEM) | Invitrogen/Gibco | 10313 | |
Penicillin/streptomycin | Invitrogen/Gibco | 15140-122 | |
L-glutamine | Invitrogen/Gibco | 25030-081 | |
Fetal Bovine Serum (HyClone) | ThermoScientific | SH30071.03 |