The temporal and spatial resolution of genetic manipulations determines the spectrum of biological phenomena that they can perturb. Here we use temporally and spatially discrete in vivo electroporation, combined with transgenic lines of zebrafish, to induce expression of a GFP transgene specifically in neurons of the developing olfactory bulb.
In vivo electroporation is a powerful method for delivering DNA expression plasmids, RNAi reagents, and morpholino anti-sense oligonucleotides to specific regions of developing embryos, including those of C. elegans, chick, Xenopus, zebrafish, and mouse 1. In zebrafish, in vivo electroporation has been shown to have excellent spatial and temporal resolution for the delivery of these reagents 2-7. The temporal resolution of this method is important because it allows for incorporation of these reagents at specific stages in development. Furthermore, because expression from electroporated vectors occurs within 6 hours 7, this method is more timely than transgenic approaches. While the spatial resolution can be extremely precise when targeting a single cell 2, 6, it is often preferable to incorporate reagents into a specific cell population within a tissue or structure. When targeting multiple cells, in vivo electroporation is efficient for delivery to a specific region of the embryo; however, particularly within the developing nervous system, it is difficult to target specific cell types solely through spatially discrete electroporation. Alternatively, enhancer trap transgenic lines offer excellent cell type-specific expression of transgenes 8. Here we describe an approach that combines transgenic Gal4-based enhancer trap lines 8 with spatially discrete in vivo electroporation 7, 9 to specifically target developing neurons of the zebrafish olfactory bulb. The Et(zic4:Gal4TA4,UAS:mCherry)hzm5 (formerly GA80_9) enhancer trap line previously described 8, displays targeted transgenic expression of mCherry mediated by a zebrafish optimized Gal4 (KalTA4) transcriptional activator in multiple regions of the developing brain including hindbrain, cerebellum, forebrain, and the olfactory bulb. To target GFP expression specifically to the olfactory bulb, a plasmid with the coding sequence of GFP under control of multiple Gal4 binding sites (UAS) was electroporated into the anterior end of the forebrain at 24-28 hours post-fertilization (hpf). Although this method incorporates plasmid DNA into multiple regions of the forebrain, GFP expression is only induced in cells transgenically expressing the KalTA4 transcription factor. Thus, by using the GA080_9 transgenic line, this approach led to GFP expression exclusively in the developing olfactory bulb. GFP expressing cells targeted through this approach showed typical axonal projections, as previously described for mitral cells of the olfactory bulb 10. This method could also be used for targeted delivery of other reagents including short-hairpin RNA interference expression plasmids, which would provide a method for spatially and temporally discrete loss-of-function analysis.
1. Transgenic embryos
2. Mounting embryos
3. Micro-injection of DNA expression plasmid
4. Electroporation
5. Mounting embryos for imaging
6. Representative Results:
Although GFP expression can be observed as early as 6 hours after electroporation, here we are showing images from an embryo 4 days after electroporation such that the neurite structure of the targeted cells has sufficiently developed. The Et(zic4:Gal4TA4,UAS:mCherry)hzm5 transgenic enhancer trap line displays constitutive expression of mCherry (and KalTA4) in the hindbrain, cerebellum, forebrain, and olfactory bulb in embryos at 5 days post-fertilization (Fig. 1A and 1C). Embryos that have had a UAS-GFP expression plasmid incorporated by targeted electroporation (as described above), show GFP expression that is restricted to cells of the developing olfactory bulb (Fig. 1B, 1D, and 1E). Only cells transgenically-expressing the KalTA4 transcription factor are able to activate expression from this UAS-GFP plasmid. Incorporation of this plasmid into non-transgenic embryos does not lead to any detectable GFP expression. Thus, it is the combined action of targeted electroporation of UAS-GFP and localized transgenic expression of the KalTA4 driver that leads to exclusive expression of GFP in cells of the developing olfactory bulb. The GFP-expressing cells show typical axonal projections of olfactory bulb mitral cells (Fig. 1B and 1D) 10. In order to visualize axon projections, images in figure 1B and 1D had to be exposed at high levels such that the region of cell bodies were well over-exposed. A lower level of exposure (Fig. 1E) shows that cell bodies expressing GFP are indeed localized to the olfactory bulb (compare Fig. 1C and 1E; gray line marks the border of the olfactory bulb).
Figure 1. Targeted GFP expression in the olfactory bulb of a 5 dpf zebrafish embryo. The Et(zic4:Gal4TA4,UAS:mCherry)hzm5 transgenic enhancer trap line, displays constitutive expression of mCherry in the hindbrain, cerebellum, forebrain, and olfactory bulb (A and C, mCherry fluorescence shown in red). This expression of mCherry is mediated by transgenic Gal4-expression. Embryos that have been electroporated with a UAS-GFP expression vector at 28 hpf, display targeted GFP expression in the olfactory bulb at 5 days post-fertilization (B, D, and E, GFP fluorescence shown in green. Same embryo as in A and C). A lower exposure image at bottom (E) shows that GFP expression is limited to cell bodies of the olfactory bulb. The gray line indicates the border of the olfactory bulb. Bright field (gray scale), green fluorescence (green), and red fluorescence (red) images were all take with an Olympus BX60 fluorescence microscope.
Here we have described an in vivo electroporation method in zebrafish that utilizes an enhancer trap Gal4 transgenic line to target expression of the electroporated transgene to a specific population of cells in the developing olfactory bulb. This approach combines the excellent temporal resolution of in vivo electroporation 7 with the cell-type specific expression mediated by enhancer trap transgenic lines 8. Although here we have described the targeting of the olfactory bulb, in vivo electroporation can be used to target other regions of the developing nervous system 2-7, and enhancer trap lines are available with targeted expression of Gal4 in many different specific cell types or tissues 8, 11. Of course, this electroporation technique should also be suitable for other combinatioral genetic approaches such as the LexA or Tet systems 13, 14, 15. A major advantage of electroporation is that there is not need to make additional transgenic lines given that a suitable Gal4-line is available. This saves six months.
In vivo electroporation allows for the incorporation of oligonucleotides into neurons and their precursors at whatever specific stage of nervous systems development is of interest 7. This temporal resolution is particularly advantageous for loss-of-function analysis because it can circumvent problems with targeting genes that have essential functions at earlier developmental stages. The method we describe here can also be used to incorporate loss-of-function reagents including RNAi oligonucleotides or constructs and morpholino anti-sense oligonucleotides 4, 7. Plasmid-driven reagents such as dominant-negative protein expression plasmids or short-hairpin RNAi plasmids can also be placed under control of a Gal4 UAS, allowing for the precise cell type-specific expression we have shown here for expression of GFP.
The authors have nothing to disclose.
This work was funded through an NIH R15 AREA grant to John Horne (NIMH; R15MH083221).
Reagents:
Equipment: