Summary

一个新颖的方法记录经颅磁刺激诱发幻视

Published: April 01, 2010
doi:

Summary

幻视是通过采用经颅磁刺激(TMS),视觉皮层的敏感区域,可诱发瞬态光知觉。我们展示了幻视阈值确定的标准协议,并引入了量化和分析认为幻视新方法。

Abstract

人类视觉皮层的刺激产生的光的短暂的知觉,称为光幻视。幻视侵入枕叶皮层电刺激诱导,而且是由非侵入性的经颅磁刺激(TMS)<sup> 1</sup>相同的皮层区域。一个幻视是诱发的强度(幻视阈值)是视觉皮层的兴奋性的行之有效的措施,是用来研究皮质皮层的相互作用,功能组织<sup> 2</sup>,易患病理<sup> 3,4</sup>和视觉处理<sup> 5-7</sup>。幻视通常定义三个特点:他们是在视觉上hemifield对侧刺激观察,它们是诱发主体的眼睛是开启或关闭时,和他们凝视的方向与空间位置的变化<sup> 2</sup>。各种各样的方法已被用于文件幻视,但缺乏一种标准化的方法。我们展示了可靠的程序,以取得幻视的阈值,并引入新型幻视的文件和分析系统。我们开发的激光跟踪和绘图系统(LTaP),成本低,很容易建立和运作系统,记录的位置和大小的实时感知幻视。 LTaP系统,提供一个稳定和可定制的的量化和分析幻视的环境。

Protocol

1。诱导刺激右枕叶一个幻视在昏暗的房间,座位在一个舒适的位置参与者。有一个泳帽,参与者,提供听力保护他们,并调整帽和舒适的耳塞。定位和标记的初始点的刺激,首先确定的枕外隆凸尖,然后移动〜2厘米rostrally〜2厘米横向(图1)。另外,无框架立体定向系统,可用于定位目标的皮层区域的TMS线圈。 使用一个标准图个(双)TMS的线圈(70毫米),线圈的中心?…

Discussion

在这段视频中,我们已经证明获得幻视阈值的一个标准协议,并推出了录音幻视大小和视野位置的新方法。幻视引起右枕叶皮层相邻枕极个别脉冲TMS的。幻视阈值提供了一个相对皮质兴奋性的宝贵的指示;,并已用于作为测量结果作为确定适当强度的TMS的各种研究人类的视觉感知8-12的手段。

由TMS引起的幻视,提供调查的视觉系统的内在的和非侵入性的措施。但是,一?…

Materials

Material Name Tipo Company Catalogue Number Comment
TMS   Magstim Magstim 200  
Webcam   Logitech QuickCam Orbit MP  
Projector   Epson Epson PowerLite 7900p  
Projection Screen   DA LITE Da-View fast-fold deluxe screen  
Laser Pointer   Generic    

Referências

  1. Kammer, T., Puls, K., Strasburger, H., Hill, N. J., Wichmann, F. A. Transcranial Magnetic Stimulation in the Visual System. I. the Psychophysics of Visual Suppression. Experimental Brain Research. 160, 118-128 (2005).
  2. Afra, J., Mascia, A., Gérard, P., Maertens de Noordhout, A., Schoenen, J. Interictal cortical excitability in migraine: a study using transcranial magnetic stimulation of motor and visual cortices. Ann. Neurol. 44, 209-215 (1998).
  3. Aurora, S. K., Ahmad, B. K., Welch, K. M., Bhardhwaj, P., Ramadan, N. M. Transcranial magnetic stimulation confirms hyperexcitability of occipital cortex in migraine. Neurology. 50, 1111-1114 (1998).
  4. Silvanto, J., Pascual-Leone, A. . State-Dependency of Transcranial Magnetic Stimulation. Brain Topography. 21, 1-10 (2008).
  5. Silvanto, J., Muggleton, N., Cowey, A., Walsh, V. Neural adaptation reveals state-dependent effects of transcranial magnetic stimulation. European Journal of Neuroscience. 25, (2007).
  6. Kammer, T., Beck, S. Phosphene thresholds evoked by transcranial magnetic stimulation are insensitive to short-lasting variations in ambient light. Exp Brain Res. 145, 407-4010 (2002).
  7. Bjoertomt, O., Cowey, A., Walsh, V. Spatial neglect in near and far space investigated by repetitive transcranial magnetic stimulation. Brain. 125, 2012-2022 (2002).
  8. Gothe, J. Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation. Brain. 125, 479-490 (2002).
  9. Hotson, J. R., Anand, S. The selectivity and timing of motion processing in human temporo-parieto-occipital and occipital cortex: a transcranial magnetic stimulation study. Neuropsychologia. 37, 169-179 (1999).
  10. Kammer, T. Phosphenes and transient scotomas induced by magnetic stimulation of the occipital lobe: their topographic relationship. Neuropsychologia. 37, 191-198 (1998).
  11. Stewart, L., Ellison, A., Walsh, V., Cowey, A. The role of transcranial magnetic stimulation (TMS) in studies of vision, attention and cognition. Acta Psychol (Amst). , 107-275 (2001).
check_url/pt/1762?article_type=t

Play Video

Citar este artigo
Elkin-Frankston, S., Fried, P. J., Pascual-Leone, A., Rushmore III, R. J., Valero-Cabré, A. A Novel Approach for Documenting Phosphenes Induced by Transcranial Magnetic Stimulation. J. Vis. Exp. (38), e1762, doi:10.3791/1762 (2010).

View Video