This protocol describes the isolation of Photosystem I (PSI) – Light Harvesting Complex I (LHCI) from plant tissues. PSI along with PSII is responsible for the conversion of light to chemical energy in oxygenic photoautotrophs and has a quantum efficiency of ~1, making it a target for studying light-driven energy transfer.
This method is used to isolate Photosystem I (PSI) together with the Light Harvesting Complex I (LHCI), its native antenna, from plants. PSI-LHCI is a large membrane protein complex coordinating hundreds of light harvesting and electron transport factors and is the most efficient light harvesting system found in nature. Photons absorbed by the four LHCA antenna proteins that make up LHCI are transferred through excitonic interaction to the PSI core reaction center and are used to facilitate light-driven charge separation across the thylakoid membrane, providing reducing power and energy for carbon fixation in photoautotrophic organisms. The high quantum efficiency of PSI makes this complex an excellent model to study light-driven energy transfer. In this protocol, plant tissue is mechanically homogenized, and the chloroplasts are separated from the bulk cellular debris by filtration and centrifugation. The isolated chloroplasts are then osmotically lysed, and the thylakoid membranes are recovered via centrifugation and solubilized using the detergent n-dodecyl-beta-maltoside. The solubilized material is loaded onto an anion exchange column to collect most of the chlorophyll-containing complexes. Larger complexes are precipitated from the solution, resuspended in a small volume, and loaded on sucrose gradients to separate the major chlorophyll-containing complexes. The resulting sucrose gradient fractions are characterized to identify the band of interest containing PSI-LHCI. This protocol is highly similar to the protocol used in the crystallization of plant PSI-LHCI with some simplifications and relies on methods developed over the years in the lab of Nathan Nelson.
Oxygenic photosynthesis is one of the most important chemical reactions on our planet. The conversion of light to chemical energy occurs in the reaction centers of two photosystems, photosystem I (PSI) and photosystem II (PSII)1 (Figure 1A). PSI is a large, highly conserved multisubunit pigment-protein complex that evolved over 3.5 billion years ago2,3. This complex, which contains approximately 100 chlorophyll molecules and about 20 carotenoids, facilitates the transfer of electrons across the thylakoid membrane from plastocyanin to ferredoxin acting as the terminal electron acceptor of the photosynthetic electron transport chain1,4,5(Figure 1B, C). In plants, this light-driven charge separation is the result of light energy transferred from both PSI core antenna pigments and the peripheral antenna pigments of Light Harvesting complex I (LHCI) to the PSI reaction center (Figure 1D). LHCI is a PSI-specific antenna complex within the thylakoid membrane composed of four chlorophyll a/b binding LHCA antenna proteins6,7.
Figure 1: The photosynthetic electron transport chain and the overall structure of the PSI-LHCI complex. (A) The photosynthetic electron transport chain contains four main membrane-bound photosynthetic complexes and three soluble electron carriers. Electron flow (red arrows) through the transport chain and proton pumping (black arrows) into the lumen are used to create reducing power (NADPH) and produce ATP for carbon fixation37,38,39,40. Created with Biorender.com. (B) The structure of the plant PSI-LHCI from the lumenal side. PsaA and PsaB are the largest subunits of PSI and comprise the core of the complex. LHCI is the light-harvesting antenna complex associated with PSI and is composed of four antennae, LHCA1-4. (C) The PSI-LHCI complex coordinates over 150 ligands. Shown here are chlorophylls (green), carotenoids (pink), quinones (purple), lipids (orange), and the FeS clusters of the reaction center in yellow/orange. (D) The reaction center of PSI is split into two branches (A and B), starting from P700, the reaction center special chlorophyll pair, going into two accessory chlorophylls (A-1A/B) followed by another pair of chlorophylls (A0A/B). These chlorophylls are followed by a phylloquinone (A1A/B or QA/B in some publications) in each branch before joining together at the iron-sulfur cluster Fx followed by two more clusters, FA and FB, coordinated by the PsaC subunit. Please click here to view a larger version of this figure.
The first isolation of PSI from plants in 1966 shed light on the differences in light-harvesting pigment content between PSI and PSII, showing that PSI was highly enriched in β-carotene relative to PSII and that cytochromes f and b6 (part of the cytochrome b6f complexes) are not tightly bound to PSI but loosely associated within the thylakoid membrane8. Nine years later, with partial denaturation of isolated PSI via SDS treatment it was shown that dissociation of small PSI subunits quenched NADP+ photoreduction by PSI, while the P700 signal and most of the chlorophylls remained within the remaining large molecular weight PSI particle, identifying the necessity of some of PSI's small subunits for full biological function and the location of the PSI reaction center9. Research into the association between the PSI core and LHCI was first published in the early 1980s, when isolations of different-sized PSI species containing differing ratios of chlorophyll A to P700 were observed, suggesting the association of PSI with a chlorophyll-containing peripheral antenna system10,11,12,13. However, it wasn't until 2003 that the first crystal structure of the plant PSI was published14. The crystal structure of the plant PSI-LHCI highlighted the remarkable conservation between the PSI core of plants and cyanobacteria and provided the first picture of chlorophyll arrangement within the plant PSI core and LHCI antenna, furthering the understanding of the energy transfer pathways within the plant PSI-LHCI complex14. Over the past decade more plant PSI-LHCI structures were determined adding atomic levels details to the structural description of the super-complex15,16,17,18,19.
PSI not only has a quantum efficiency close to one, but boasts the most negative reduction potential in nature20,21. A complete understanding of PSI-LHCI and its properties is essential for understanding light driven energy transfer and applying bio-inspired solutions to future light harvesting technology. To further this understanding of how PSI-LHCI and its many subunits can achieve such efficient energy conversion, complexes isolated for study must be active and whole. This protocol allows for the gentle purification of the complex in this active state22,23.
In this method plant tissues are mechanically disrupted and chloroplasts containing the photosynthetic electron transport chain are isolated by centrifugation. The thylakoid membranes are separated after hypotonic chloroplast lysis and are then solubilized using the detergent n-dodecyl-beta-maltoside (β-DDM). The solubilized chlorophyll containing membrane complexes are separated using anion exchange chromatography and PSI-LHCI is further separated using sucrose gradient centrifugation. After removal from the gradient and after characterization by both spectroscopy and using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), the complex can be prepared for further experiments. This procedure is used to purify the PSI-LHCI complex from plants without the use of any affinity tags. With minor modifications it can be adapted for preparations of the complex from other organisms, stabilize alternative PSI complexes or other complexes of the photosynthetic electron transport chain. Similar protocols were used to obtain PSI complex suitable for high resolution structural analysis23,24,25,26,27,28,29,30.
1. Preparation of thylakoid membranes from spinach leaves
2. Membrane solubilization
3. Elution using diethylaminoethyl (DEAE) column
4. Polyethylene glycol (PEG) precipitation
5. Preparation of sucrose gradients
6. Removal of sucrose fractions and PEG precipitation
7. Measuring P700 content of PSI
NOTE: This method can be used to quickly assay PSI.
This protocol is used to isolate and characterize active PSI-LHCI from plant tissues over three days. PSI-LHCI is purified by first isolating plant thylakoid membranes which are then solubilized with β-DDM. Typical yields from the membrane preparation stage are 200 mg of chlorophyll from 500 g of leaves. This can vary based on the initial material used.
Days two and three of the experiment use anion exchange chromatography and sucrose gradient centrifugation to separate the different protein complexes within the thylakoid membrane. After solubilization and ultracentrifugation, a small dark insoluble pellet is normal, typically 80% or more of the chlorophyll remains in the solution.
The binding of the chlorophyll-containing complexes to the DEAE column is nearly complete, and typically about 50%-70% of the column is visibly green after completing the column wash step. The flow through and early fractions of the NaCl gradient are clear to orange/yellow due to the presence of carotenoids (Figure 2). The elution profile of this column has one major chlorophyll peak. To obtain a highly pure PSI-LHCI the early green fractions should be discarded and only the fractions with the highest chlorophyll concentration should be used. The dark green fractions are pooled, and PEG-precipitated before performing sucrose gradient centrifugation overnight.
On day three of the experiment, the photosynthetic complexes separated via sucrose gradient are isolated and can be either characterized then or aliquoted and frozen at -80 °C for later analysis. After centrifugation, the bands of the sucrose gradient should be distinct and well defined (Figure 3A). The lowest weight fractions are usually composed of LHCII or minor LHC antenna, followed by the PSI-LHCI complex, which is typically the largest complex in the gradient but can run in different and distinct fractions. These different PSI bands, which are largely indistinguishable using SDS-PAGE (Figure 3B), are likely the result of higher-order oligomers. The structure of PSI dimers from the single-celled eukaryotic alga Chlamydomonas reinhardtii was determined recently, but similar results are still not available from plants28, 35.
On a denaturing gel, the most visible and characteristic subunits of the PSI-LHCI complex are PsaA and PsaB, which run around 55-60 kDa, and the LHCA antennae of LHCI from 20-25 kDa, as can be seen in Figure 3B fractions 1, 2, and 312. Depending on the gel, PsaA and PsaB may not resolve from each other as they are very similar in size and often run as a single band. LHCB1-3 of the LHCII antenna run around 25 kDa, suggesting that fractions 4 and 5 likely contain LHCII and monomeric LHC's36.
Figure 4 shows the absorption spectrum of all five green bands from the sucrose gradient. Within the PSI-LHCI complex chlorophyll A is the most prevalent photosynthetic pigment giving PSI-LHCI absorbance bands around 438 nm and 680 nm (Figure 4A). The peak at 680 nm is the chlorophyll A Qy transition which is shifted to longer wavelengths by the pigment-protein interactions within PSI and is seen in the F1, F2, and F3 fractions, differentiating it from the fractions primarily containing LHCII that have a relatively blue shifted Qy transition and a higher chlorophyll B content, like fractions F4 and F5 (Figure 4B). The emission from all five samples collected from a sucrose gradient after excitation at 440 nm is shown in Figure 4C. The low fluorescence yield from PSI-LHCI compared to LHCII or any other chlorophyll A complex (Figure 4D) can also be used to quickly identify the pure PSI-LHCI fractions.
Measuring P700 content can be used to assay for PSI. Upon oxidation, P700 bleaching is observed as a decrease in absorbance at around 700 nm. In Figure 5, the absorbance of PSI-LHCI incubated in the dark for 1 h with 10 mM ascorbic acid is subtracted from the same sample subsequently exposed to high light. PSI-LHCI contains around 140 chlorophylls, here we observe a chlorophyll to P700 ratio of about 120 to 1, a slightly lower ratio than expected (around 150:1). The accuracy of this measurement can vary depending on the spectrometer as the difference in absorbance due to P700 bleaching is relatively small. This measurement may also be affected by some differences related to the extinction coefficient of P700 itself. It is common to observe oxidation-dependent differences in other chlorophyll-containing complexes with minima around 672-680 nm; however, the differences around 700 nm are indicative of the presence of P700.
Figure 2: Anion exchange purification of chlorophyll-containing complexes. (A) Elution profile from a linear NaCl gradient on a DEAE column of solubilized chloroplasts membranes. The collected main chlorophyll peak is indicated together with the absorption of the sample at 678 nm. (B) Absorption spectra of all collected fractions. Please click here to view a larger version of this figure.
Figure 3: Separation of PSI-LHCI using sucrose gradient centrifugation. (A) Pigment protein complexes from the main chlorophyll DEAE peak resolved on a 10%-30% sucrose gradient. (B) SDS-PAGE of some of the fractions taken during the purification. The final PSI-LHCI fraction is labeled as F3. Abbreviations: chl = chlorophyll. Please click here to view a larger version of this figure.
Figure 4: Absorbance and emission of sucrose gradient fractions. (A) UV-Vis spectra of F1-F5 normalized on the chlorophyll A Qy peak maximum (~678 nm depending on the fraction). Regions showing chlorophyll B absorption are indicated. (B) Close up on the Qy peak positions of F1-F5 showing the different maximum positions indicative of PSI-LHCI or LHC's. (C) Normalized emission (excited at 440 nm) of F1-F5 showing higher far-red emissions (705-750 nm) in PSI-LHCI fraction. (D) Total emission from F1-F5. PSI-LHCI fractions were measured at an OD679 of 0.1, while F4 and F5 were measured at OD677 of 0.01 and the spectra multiplied by 10 to reflect the same chlorophyll amount. Please click here to view a larger version of this figure.
Figure 5: Measuring P700 content of PSI. Light minus dark spectra of PSI-LHCI showing the contribution of P700 (minima around 702 nm). Please click here to view a larger version of this figure.
Buffer | Components | Concentration |
STN | Sucrose | 400 mM |
NaCl | 15 mM | |
Tricine-NaOH pH 8 | 30 mM | |
Hypotonic buffer | Tricine-NaOH pH 8 | 10 mM |
High salt resuspension buffer | Tricine-NaOH pH 8 | 10 mM |
NaCl | 150 mM | |
STN2 | Sucrose | 400 mM |
Tricine-NaOH pH 8 | 20 mM | |
Column Low Salt | Tricine-NaOH pH 8 | 20 mM |
b-DDM | 0.10% | |
NaCl | 5 mM | |
Column High Salt | Tricine-NaOH pH 8 | 20 mM |
B-DDM | 0.10% | |
NaCl | 200 mM | |
Post-Column Resuspension | Tricine-NaOH pH 8 | 20 mM |
b-DDM | 0.05% | |
Sucrose gradient buffer | Sucrose | 10-30% |
Tricine-NaOH pH 8 | 30 mM | |
NaCl | 15 mM | |
β-DDM | 0.05% |
Table 1: Buffers and components. A comprehensive list of the buffers used in this protocol and their components. All buffers are chilled to 4 °C prior to use.
Using this protocol, the PSI-LHCI complex from plant tissues can be purified in its active state. Spinach leaves were used here, but these methods can be applied to preparations from various plants23,40. In all cases, care must be taken while performing this protocol to protect the complex from damage. This preparation should be done in the dark or under a green light, on ice with pre-chilled buffers, and all resuspension steps should be performed gently.
During thylakoid isolation, efficient and careful centrifugation and resuspension steps are critical for obtaining concentrated membranes and undisrupted complexes. During starch removal, it is not uncommon for a small amount of green material to pellet at the same time and for starch granules to repeatedly pellet in the subsequent steps. The green membranes can be gently suspended from the insoluble starch using a soft paint brush and gentle application of the homogenizer. It is important not to disrupt the starch pellet to maximize starch removal during each step. Tracking chlorophyll concentration during different stages of the preparation is an effective way to gauge the efficiency of the different steps and compare multiple preparations.
PEG precipitation is highly effective but requires some judgment. The PEG (and NaCl) concentration used at each step can be adjusted based on the appearance of the sample. Typically, the transition from clear to turbid sample can be visually assayed to optimize this step and achieve precipitation at the lowest possible PEG concentration. Following precipitation, care must be taken to completely remove all traces of PEG before resuspending the sample.
Sucrose gradient centrifugation should yield defined bands in the gradient, but factors such as sample and detergent concentration as well as the volume of loaded sample, can strongly affect this. Loading several different volumes in multiple gradients is an effective way to troubleshoot poor band separation and observe hard-to-resolve bands. Optimizing the number of layers and density of the sucrose gradient is also an effective way to affect the resolution of bands within a gradient. These three factors, sample volume, sample concentration, and sucrose gradient density, are important variables when running a sucrose gradient and should be altered to suit the needs of the preparation.
The challenge when purifying PSI-LHCI is two-fold. Membrane proteins are challenging to purify, and PSI-LHCI is a 15+ subunit complex with over 100 ligands4. To study this complex, both structurally and spectroscopically, it is necessary to purify PSI-LHCI as whole and in as much of the native conformation as possible. Care must be taken to keep the complex stable, otherwise artifacts may arise from preparation that can stem from the loss of subunits and ligands to the presence of non-biologically relevant states. Spectroscopic measurements taken during the protocol allow for real-time tracking of the PSI-LHCI state with respect to chlorophyll and P700 content. This protocol is optimized for isolating active PSI-LHCI from plants, but alterations can easily be made to adapt to PSI preparations from cyanobacteria, other complexes of the photosynthetic electron transport chain or higher order complexes of PSI-LHCI where a change in pH or metal ions is required to optimize conditions28,39,30. The presence of heavy PSI bands observed in the sucrose gradient of this protocol likely indicates the presence of higher oligomeric states of the plant PSI-LHCI and has yet to be characterized, providing an opportunity for future research into this topic. The efficiency with which PSI converts photons to charge-separated states is unparalleled in nature. The ability to study whole and active PSI-LHCI in the lab is key to our understanding of the evolution of oxygenic photosynthetic machinery, its electron transport chain, and the rational design of bio-inspired solar harvesting technology.
The authors have nothing to disclose.
Y.M. acknowledges the support by the National Science Foundation under Award No. 2034021 and the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under Award No. DE-SC0022956. C.G. is supported by the National Science Foundation under Award No. 00036806.
15 mL Falcon tube | VWR | 62406-200 | Used for storing thylakoids |
Bio rad Econo-Column 1.5 X 30 cm | biorad | 7374153 | |
Cheesecloth grade 50, 100% cotton | Arkwright LLC | B07D1FZZMB | From Amazon |
Glass rods | Millipore Sigma | BR135825 | Any similar rod will suffice |
Low profile 64 oz vitamix blender | Vitamix | ||
NaCl | Sigma-Aldrich | S7653 | |
Open top polyallomer centrifugation tubes | Seton Scientific | 5030 | |
Optima XE Ultracentrifuge | beckman coulter | A94471 | |
Polyethylene glycol 6,000 | Hampton Research | HR2-533 | |
Potter-Elvehjen Tissue Grinder, 30 ml. | WHEATON | 358049 | |
Sucrose | Sigma-Aldrich | S7903 | |
SW 40 Ti | beckman coulter | 331301 | |
TOYOPEARL DEAE-650C | Tosoh Bioscience | 7988 | |
Tricine | Sigma-Aldrich | T0377 | |
β-DDM | Glycon – Biochemicals GmbH | D97002 | Stored as 10% stocks at -20 °C |
.