Summary

Imaging chimico iperspettrale non lineare multimodale mediante microscopia a scansione lineare con generazione di somma-frequenza vibrazionale

Published: December 01, 2023
doi:

Summary

È stato sviluppato un quadro di imaging iperspettrale rapido e multimodale per ottenere immagini di generazione di somma e frequenza vibrazionale a banda larga (VSFG), insieme a modalità di imaging in campo chiaro, generazione di seconda armonica (SHG). A causa della risonanza della frequenza infrarossa con le vibrazioni molecolari, viene rivelata la conoscenza della morfologia strutturale e mesoscopica microscopica dei campioni consentiti dalla simmetria.

Abstract

La generazione di somma-frequenza vibrazionale (VSFG), un segnale ottico non lineare del secondo ordine, è stata tradizionalmente utilizzata per studiare le molecole alle interfacce come tecnica di spettroscopia con una risoluzione spaziale di ~100 μm. Tuttavia, la spettroscopia non è sensibile all’eterogeneità di un campione. Per studiare campioni mesoscopicamente eterogenei, noi, insieme ad altri, abbiamo spinto il limite di risoluzione della spettroscopia VSFG fino al livello di ~1 μm e abbiamo costruito il microscopio VSFG. Questa tecnica di imaging non solo è in grado di risolvere le morfologie del campione attraverso l’imaging, ma anche di registrare uno spettro VSFG a banda larga in ogni pixel delle immagini. Essendo una tecnica ottica non lineare del secondo ordine, la sua regola di selezione consente la visualizzazione di strutture autoassemblate non centrosimmetriche o chirali che si trovano comunemente in biologia, scienza dei materiali e bioingegneria, tra gli altri. In questo articolo, il pubblico sarà guidato attraverso un design di trasmissione invertita che consente l’imaging di campioni non fissi. Questo lavoro mostra anche che la microscopia VSFG può risolvere informazioni geometriche specifiche per la chimica di singoli fogli autoassemblati combinandola con un risolutore di funzioni di rete neurale. Infine, le immagini ottenute in configurazioni in campo chiaro, SHG e VSFG di vari campioni discutono brevemente le informazioni uniche rivelate dall’imaging VSFG.

Introduction

La generazione di somma-frequenza vibrazionale (VSFG), una tecnica ottica non lineare del secondo ordine 1,2, è stata ampiamente utilizzata come strumento di spettroscopia per profilare chimicamente campioni simmetriciconsentiti 3,4,5,6,7,8,9,10,11,12,13, 14,15,16,17,18,19,20,21,22. Tradizionalmente, il VSFG è stato applicato ai sistemi interfacciali 8,9,10,11 (cioè gas-liquido, liquido-liquido, gas-solido, solido-liquido), che mancano di simmetria di inversione – un requisito per l’attività VSFG. Questa applicazione di VSFG ha fornito una vasta gamma di dettagli molecolari delle interfacce sepolte 12,13, delle configurazioni delle molecole d’acqua alle interfacce 14,15,16,17,18 e delle specie chimiche alle interfacce 19,20,21,22.

Sebbene il VSFG sia stato potente nel determinare le specie molecolari e le configurazioni alle interfacce, il suo potenziale nella misurazione delle strutture molecolari di materiali privi di centri di inversione non è stato realizzato. Ciò è in parte dovuto al fatto che i materiali potrebbero essere eterogenei nel loro ambiente chimico, nelle composizioni e nella disposizione geometrica, e uno spettrometro VSFG tradizionale ha un’ampia area di illuminazione dell’ordine di 100 μm2. Pertanto, la spettroscopia VSFG tradizionale riporta informazioni mediate dall’ensemble del campione su una tipica area di illuminazione di 100 μm2. Questa media d’insieme può portare a cancellazioni di segnale tra domini ben ordinati con orientamenti opposti e a un’errata caratterizzazione delle eterogeneità locali 15,20,23,24.

Con i progressi negli obiettivi per microscopi ad alta apertura numerica (NA), basati su riflessione (geometrie di Schwarzschild e Cassegrain), che sono quasi privi di aberrazioni cromatiche, la dimensione del fuoco dei due fasci negli esperimenti VSFG può essere ridotta da 100 μm 2 a 1-2 μm2 e in alcuni casi submicron25. Compreso questo progresso tecnologico, il nostro gruppo e altri hanno sviluppato VSFG in una piattaforma di microscopia 20,23,26,27,28,29,30,31,32,33,34,35,36. Recentemente, abbiamo implementato un layout ottico invertito e uno schema di rilevamento a banda larga37, che consente una raccolta senza soluzione di continuità di immagini multimodali (VSFG, generazione di seconda armonica (SHG) e ottica in campo chiaro). L’imaging multimodale consente una rapida ispezione dei campioni utilizzando l’imaging ottico, correlando tra loro vari tipi di immagini e localizzando le posizioni del segnale sulle immagini del campione. Con l’ottica di illuminazione acromatica e la scelta della sorgente di illuminazione laser pulsata, questa piattaforma ottica consente in futuro l’integrazione senza soluzione di continuità di tecniche aggiuntive come la microscopia a fluorescenza38 e la microscopia Raman, tra le altre.

In questa nuova disposizione, sono stati studiati campioni come le organizzazioni gerarchiche e una classe di auto-assemblaggi molecolari (MSA). Questi materiali includono il collagene e la biomimetica, in cui sia la composizione chimica che l’organizzazione geometrica sono importanti per la funzione finale del materiale. Poiché VSFG è un segnale ottico non lineare del secondo ordine, è specificamente sensibile alle disposizioni intermolecolari39,40, come la distanza intermolecolare o gli angoli di torsione, il che lo rende uno strumento ideale per rivelare sia le composizioni chimiche che le disposizioni molecolari. Questo lavoro descrive le modalità VSFG, SHG e campo chiaro dello strumento principale costituito da un laser a stato solido a cavità drogato con itterbio che pompa un amplificatore parametrico ottico (OPA), un microscopio invertito multimodale costruito in casa e un analizzatore di frequenza monocromatore accoppiato a un rivelatore bidimensionale ad accoppiamento caricato (CCD)27. Vengono fornite procedure dettagliate di costruzione e allineamento e un elenco completo delle parti della configurazione. Un’analisi approfondita di un MSA, la cui subunità molecolare fondamentale è costituita da una molecola di sodio-dodecilsolfato (SDS), un tensioattivo comune, e due molecole di β-ciclodestrina (β-CD), nota come SDS@2 β-CD, viene fornita anche come esempio per mostrare come VSFG può rivelare dettagli geometrici specifici della molecola della materia organizzata. È stato inoltre dimostrato che i dettagli geometrici chimicamente specifici dell’MSA possono essere determinati con un approccio risolutore di funzioni di rete neurale.

Protocol

1. Microscopio VSFG a scansione lineare iperspettrale Sistema laserUtilizzare un sistema laser pulsato (vedi Tabella dei materiali) centrato a 1025 nm ± 5 nm. Il laser è impostato a 40 W, 200 kHz (200 μJ/impulso) con un’ampiezza di impulso di ~290 fs.NOTA: L’esatta frequenza di ripetizione può variare e un laser ad alta frequenza di ripetizione generalmente funziona meglio per questo microscopio VSFG. Guidare l’uscita del laser a semina in un amplificatore parametrico…

Representative Results

Figura 5: Struttura molecolare, morfologia e orientamento potenziale di SDS@β-CD. (A) Vista dall’alto e (B) vista laterale struttura chimica di SDS@β-CD. (C) Distribuzione rappresentativa del campione eterogeneo dei fogli a mesoscala sul piano del campione. La subunità molecolare potrebbe avere d…

Discussion

I passaggi più critici vanno da 1,42 a 1,44. È fondamentale allineare bene la lente dell’obiettivo per una risoluzione spaziale ottica. È anche importante raccogliere il segnale emesso, il relè e proiettare il raggio di scansione come una linea nelle fessure di ingresso. Allineamenti corretti garantirebbero la migliore risoluzione e il miglior rapporto segnale/rumore. Per un campione tipico, come i fogli SDS@2 β-CD da 100 μm per 100 μm, un’immagine a buona risoluzione (risoluzione ~1 μm) con un elevato rapporto s…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Lo sviluppo dello strumento è supportato dal Grant NSF CHE-1828666. ZW, JCW e WX sono supportati dal National Institutes of Health, National Institute of General Medical Sciences, Grant 1R35GM138092-01. BY è sostenuto dall’Associazione per la promozione dell’innovazione giovanile, Accademia cinese delle scienze (CAS, 2021183).

Materials

1x Camera Por Thorlabs WFA4100 connect a camera to a microscope or optical system
25.0 mm Right-Angle Prism Mirror, Protected Gold Thorlabs MRA25-M01 reflect light and produce retroreflection, redirecting light back along its original path
3” Universal Post Holder-5 Pack Thorlabs UPH3-P5 hold and support posts of various sizes and configurations
30 mm to 60 mm Cage Plate, 4 mm Thick Thorlabs LCP4S convert between a 30 mm cage system and a 60 mm cage system
500 mm Tall Cerna Body with Epi Arm Thorlabs CEA1500 provide the function of enabling top illumination techniques in microscopy
60 mm Cage Mounted Ø50.0 mm Iris Thorlabs LCP50S control the amount of light passing through an optical system
60 mm Cage Mounting Bracket Thorlabs LCP01B mount and position a 60 mm cage system in optical setups
Air spaced Etalon SLS Optics Ltd. Customized generate narrow-band 1030 nm light 
Cage Plate Mounting Bracket Thorlabs KCB2 hold and adjust mirrors at a precise angle
CCD Andor Technologies Newton  2D CCD for frequency and spatial resolution
Collinear Optical Parametric Amplifier Light Conversion Orpheus-One-HP Tunable MID light generator
Copper Chloride Thermo Fischer Scientific A16064.30 Self-assembly component
Customized Dichroic Mirror Newport Customized selectively reflects or transmits light based on its wavelength or polarization
Ext to M32 Int Adapter Thorlabs SM1A34 provide compatibility and facilitating the connection between components with different thread types
Infinity Corrected Refractive Objective Zeiss 420150-9900-000 Refractive Objective
Infinity Corrected Schwarzschild Objective Pike Technologies Inc. 891-0007 Reflective objective
Laser Carbide, Light-Conversion C18212 Laser source
M32x0.75 External to Internal RMS Thorlabs M32RMSS adapt or convert the threading size or type of microscope objectives 
M32x0.75 External to M27x0.75 Internal Engraving Thorlabs M32M27S adapt or convert the threading size or type of microscope objectives 
Manual Mid-Height Condenser Focus Module Thorlabs ZFM1030 adjust the focus of an optical element
Monochromator Andor Technologies Shamrock 500i Provides frequency resolution for each line scan
Motorized module with 1" Travel for Edge-Mounted Arms Thorlabs ZFM2020 control the vertical positon of the imaging objective
Nanopositioner Mad City Labs Inc. MMP3 3D sample stage
Resonant Scanner EOPC SC-25 325Hz resonant beam scanner
RGB Color CCD Camera Thorlabs DCU224C Brightfield camera, discontinued but other cameras will work just as well
RGB tube lens Thorlabs ITL200 white light collection
Right Angle Kinematic Breadboard Thorlabs OPX2400 incorporate a sliding mechanism with two fixed positions
Right Angle Kinematic Mirror Mount, 30 mm Thorlabs KCB1 hold and adjust mirrors at a precise angle
Right Angle Kinematic Mirror Mount, 60 mm Thorlabs KCB2 hold and adjust mirrors at a precise angle
SM2, 60 mm Cage Arm for Cerna Focusing Stage Thorlabs CSA2100 securely mount and position condensers
Snap on Cage Cover for 60 mm Cage, 24 in Long, Thorlabs C60L24 enclose and protect the components inside the cage
Sodium dodecyl sulfate Thermo Fischer Scientific J63394.AK Self-assembly component
Three-Chnnale Controller and Knob Box for 1" Cerna Travel Stages Thorlabs MCM3001 control ZFM2020
Tube lens Thorlabs LA1380-AB – N-BK7 SFG signal collection
Visible LED Set Thorlabs WFA1010 provide illumination in imaging setup
Whitelight Source Thorlabs WFA1010 Whitelight illumination source for brightfield imaging
WPH05M-1030 – Ø1/2" Zero-Order Half-Wave Plate, Ø1" Mount, 1030 nm  Thorlabs WPH05M-1030 alter the polarization state of light passing through it
WPLQ05M-3500 – Ø1/2" Mounted Low-Order Quarter-Wave Plate, 3.5 µm  Thorlabs WPLQ05M-3500 alter the polarization state of light passing through it
X axis Long Travel Steel Extended Contact Slide Stages Optosigma TSD-65122CUU positioning stages that offer extended travel in the horizontal (X) direction
XT95 4in Rail Carrier Thorlabs XT95RC4 mount and position optical components
X-Y Axis Translation Stage w/ 360 deg. Rotation Thorlabs XYR1 precise movement and positioning of objects in two dimensions, along with the ability to rotate the platform
XY(1/2") Linear Translator with Central SM1 Thru Hole Thorlabs XYT1 provide precise movement and positioning in two dimensions
Yb doped Solid State Laser Light Conversion CB3-40W Seed laser
β-Cyclodextrin Thermo Fischer Scientific J63161.22 Self-assembly component

References

  1. Zhu, X. D., Suhr, H., Shen, Y. R. Surface vibrational spectroscopy by infrared-visible sum frequency generation. Physical Review B. 35 (6), 3047-3050 (1987).
  2. Shen, Y. R. Surface properties probed by second-harmonic and sum-frequency generation. Nature. 337 (6207), 519-525 (1987).
  3. Li, Y., Shrestha, M., Luo, M., Sit, I., Song, M., Grassian, V. H., Xiong, W. Salting up of proteins at the air/water interface. Langmuir. 35 (43), 13815-13820 (2019).
  4. Wang, C., Li, Y., Xiong, W. Extracting molecular responses from ultrafast charge dynamics at material interfaces. Journal of Materials Chemistry C. 8 (35), 12062-12067 (2020).
  5. Nihonyanagi, S., Mondal, J. A., Yamaguchi, S., Tahara, T. Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation. Annual Review of Physical Chemistry. 64 (1), 579-603 (2013).
  6. Nihonyanagi, S., Yamaguchi, S., Tahara, T. Ultrafast dynamics at water interfaces studied by vibrational sum frequency generation spectroscopy. Chemical Reviews. 117 (16), 10665-10693 (2017).
  7. Singh, P. C., Nihonyanagi, S., Yamaguchi, S., Tahara, T. Ultrafast vibrational dynamics of water at a charged interface revealed by two-dimensional heterodyne-detected vibrational sum frequency generation. The Journal of Chemical Physics. 137 (9), 094706 (2012).
  8. Jubb, A. M., Hua, W., Allen, H. C. Environmental chemistry at vapor/water interfaces: insights from vibrational sum frequency generation spectroscopy. Annual Review of Physical Chemistry. 63 (1), 107-130 (2012).
  9. Ishiyama, T., Sato, Y., Morita, A. Interfacial structures and vibrational spectra at liquid/liquid boundaries: molecular dynamics study of water/carbon tetrachloride and water/1,2-dichloroethane interfaces. The Journal of Physical Chemistry C. 116 (40), 21439-21446 (2012).
  10. Sapi, A., Liu, F., Cai, X., Thompson, C. M., Wang, H., An, K., Krier, J. M., Somorjai, G. A. Comparing the catalytic oxidation of ethanol at the solid-gas and solid-liquid interfaces over size-controlled pt nanoparticles: striking differences in kinetics and mechanism. Nano Letters. 14 (11), 6727-6730 (2014).
  11. Chen, X., Wang, J., Sniadecki, J. J., Even, M. A., Chen, Z. Probing α-helical and β-sheet structures of peptides at solid/liquid interfaces with SFG. Langmuir. 21 (7), 2662-2664 (2015).
  12. Dramstad, T. A., Wu, Z., Gretz, G. M., Massari, A. M. Thin films and bulk phases conucleate at the interfaces of pentacene thin films. The Journal of Physical Chemistry C. 125 (30), 16803-16809 (2021).
  13. Xiang, B., Li, Y., Pham, C. H., Paesani, F., Xiong, W. Ultrafast direct electron transfer at organic semiconductor and metal interfaces. Science Advances. 3 (11), e1701508 (2017).
  14. Livingstone, R. A., Nagata, Y., Bonn, M., Backus, E. H. G. Two types of water at the water-surfactant interface revealed by time-resolved vibrational spectroscopy. Journal of the American Chemical Society. 137 (47), 14912-14919 (2015).
  15. Wagner, J. C., Hunter, K. M., Paesani, F., Xiong, W. Water capture mechanisms at zeolitic imidazolate framework interfaces. Journal of the American Chemical Society. 143 (50), 21189-21194 (2021).
  16. Montenegro, A., Dutta, C., Mammetkuliev, M., Shi, H., Hou, B., Bhattacharyya, D., Zhao, B., Cronin, S. B., Benderskii, A. V. Asymmetric response of interfacial water to applied electric fields. Nature. 594 (7861), 62-65 (2021).
  17. Nihonyanagi, S., Ishiyama, T., Lee, T., Yamaguchi, S., Bonn, M., Morita, A., Tahara, T. Unified molecular view of the air/water interface based on experimental and theoretical χ(2) spectra of an isotopically diluted water surface. Journal of the American Chemical Society. 133 (42), 16875-16880 (2011).
  18. Shen, Y. R., Ostroverkhov, V. Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chemical Reviews. 106 (4), 1140-1154 (2006).
  19. Hosseinpour, S., Roeters, S. J., Bonn, M., Peukert, W., Woutersen, S., Weidner, T. Structure and dynamics of interfacial peptides and proteins from vibrational sum-frequency generation spectroscopy. Chemical Reviews. 120 (7), 3420-3465 (2020).
  20. Wang, H., Xiong, W. Vibrational sum-frequency generation hyperspectral microscopy for molecular self-assembled systems. Annual Review of Physical Chemistry. 72 (1), 279-306 (2021).
  21. Wang, H. -. F., Velarde, L., Gan, W., Fu, L. Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation. Annual Review of Physical Chemistry. 66 (1), 189-216 (2015).
  22. Inoue, K., Ahmed, M., Nihonyanagi, S., Tahara, T. Reorientation-induced relaxation of free oh at the air/water interface revealed by ultrafast heterodyne-detected nonlinear spectroscopy. Nature Communications. 11 (1), 5344 (2020).
  23. Wang, H., Gao, T., Xiong, W. Self-phase-stabilized heterodyne vibrational sum frequency generation microscopy. ACS Photonics. 4 (7), 1839-1845 (2017).
  24. Wang, H., Xiong, W. Revealing the molecular physics of lattice self-assembly by vibrational hyperspectral imaging. Langmuir. 38 (10), 3017-3031 (2022).
  25. Raghunathan, V., Han, Y., Korth, O., Ge, N. -. H., Potma, E. O. Rapid vibrational imaging with sum frequency generation microscopy. Optics Letters. 36 (19), 3891 (2011).
  26. Wang, H., Wagner, J. C., Chen, W., Wang, C., Xiong, W. Spatially dependent h-bond dynamics at interfaces of water/biomimetic self-assembled lattice materials. Proceedings of the National Academy of Sciences. 117 (38), 23385-23392 (2020).
  27. Wagner, J. C., Wu, Z., Wang, H., Xiong, W. Imaging orientation of a single molecular hierarchical self-assembled sheet: the combined power of a vibrational sum frequency generation microscopy and neural network. The Journal of Physical Chemistry B. 126 (37), 7192-7201 (2022).
  28. Han, Y., Hsu, J., Ge, N. -. H., Potma, E. O. Polarization-sensitive sum-frequency generation microscopy of collagen fibers. The Journal of Physical Chemistry B. 119 (8), 3356-3365 (2015).
  29. Chung, C. -. Y., Potma, E. O. Biomolecular imaging with coherent nonlinear vibrational microscopy. Annual Review of Physical Chemistry. 64 (1), 77-99 (2013).
  30. Potma, E. O. Advances in vibrationally resonant sum-frequency generation microscopy. Optics in the Life Sciences Congress. , (2017).
  31. Han, Y., Raghunathan, V., Feng, R. R., Maekawa, H., Chung, C. -. Y. Y., Feng, Y., Potma, E. O., Ge, N. -. H. H. Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy. The Journal of Physical Chemistry B. 117 (20), 6149-6156 (2013).
  32. Hsu, J., Haninnen, A., Ge, N. -. H., Potma, E. O. Molecular imaging with sum-frequency generation microscopy. Optics in the Life Sciences. , (2015).
  33. Hanninen, A., Shu, M. W., Potma, E. O. Hyperspectral imaging with laser-scanning sum-frequency generation microscopy. Biomedical Optics Express. 8 (9), 4230 (2017).
  34. Wang, H., Chen, W., Wagner, J. C., Xiong, W. Local ordering of lattice self-assembled SDS@2β-CD materials and adsorbed water revealed by vibrational sum frequency generation microscope. The Journal of Physical Chemistry B. 123 (29), 6212-6221 (2019).
  35. Cimatu, K., Baldelli, S. Chemical imaging of corrosion: sum frequency generation imaging microscopy of cyanide on gold at the solid−liquid interface. Journal of the American Chemical Society. 130 (25), 8030-8037 (2008).
  36. Shah, S. A., Baldelli, S. Chemical imaging of surfaces with sum frequency generation vibrational spectroscopy. Accounts of Chemical Research. 53 (6), 1139-1150 (2020).
  37. Wagner, J. a. c. k. s. o. n. . C., Zishan, W. u., Xiong, W. Multimodal nonlinear vibrational hyperspectral imaging. ChemRxiv. , (2023).
  38. Yan, C., Wagner, J., Wang, C., Ren, J., Lee, C., Wan, Y., Wang, S., Xiong, W. Multi-dimensional widefield infrared-encoded spontaneous emission microscopy: distinguishing chromophores by ultrashort infrared pulses. ChemRxiv. , (2023).
  39. Lin, Y., Fromel, M., Guo, Y., Guest, R., Choi, J., Li, Y., Kaya, H., Pester, C. W., Kim, S. H. Elucidating interfacial chain conformation of superhydrophilic polymer brushes by vibrational sum frequency generation spectroscopy. Langmuir. 38 (48), 14704-14711 (2022).
  40. Choi, J., Lee, J., Makarem, M., Huang, S., Kim, S. H. Numerical simulation of vibrational sum frequency generation intensity for non-centrosymmetric domains interspersed in an amorphous matrix: a case study for cellulose in plant cell wall. The Journal of Physical Chemistry B. 126 (35), 6629-6641 (2022).
  41. Matlab Image Processing Toolbox Hyperspectral Imaging Library. . , .
  42. Armstrong, B. H. Spectrum line profiles: the Voigt function. Journal of Quantitative Spectroscopy and Radiative Transfer. 7 (1), 61-88 (1967).
  43. Wu, Z., Xiong, W. Neumann’s principle based eigenvector approach for deriving non-vanishing tensor elements for nonlinear optics. The Journal of Chemical Physics. 157 (13), 134702 (2022).
  44. Chollet, F. Keras Neural Network Library. https://github.com/fchollet/keras accessed Apr 12. , (2021).
  45. Vicidomini, G., Bianchini, P., Diaspro, A. STED super-resolved microscopy. Nature Methods. 15 (3), 173-182 (2018).
  46. Xiong, W., Laaser, J. E., Mehlenbacher, R. D., Zanni, M. T. Adding a dimension to the infrared spectra of interfaces using heterodyne detected 2D sum-frequency generation (HD 2D SFG) spectroscopy. Proceedings of the National Academy of Sciences. 108 (52), 20902-20907 (2011).
  47. Lukas, M., Backus, E. H. G., Bonn, M., Grechko, M. Passively stabilized phase-resolved collinear sfg spectroscopy using a displaced sagnac interferometer. The Journal of Physical Chemistry A. 126 (6), 951-956 (2022).
  48. Ji, N., Ostroverkhov, V., Chen, C., Shen, Y. Phase-sensitive sum-frequency vibrational spectroscopy and its application to studies of interfacial alkyl chains. Journal of the American Chemical Society. 129 (33), 10056-10057 (2007).

Play Video

Cite This Article
Wagner, J. C., Yang, B., Wu, Z., Xiong, W. Multimodal Nonlinear Hyperspectral Chemical Imaging Using Line-Scanning Vibrational Sum-Frequency Generation Microscopy. J. Vis. Exp. (202), e65388, doi:10.3791/65388 (2023).

View Video