Aquí, describimos un protocolo para visualizar células proliferantes similares a tallos en la medusa Cladonema. La hibridación in situ fluorescente de montaje completo con un marcador de células madre permite la detección de células madre, y el etiquetado de 5-etinil-2′-desoxiuridina permite la identificación de células en proliferación. Juntas, se pueden detectar células similares a la proliferación activa.
Los cnidarios, incluidas las anémonas de mar, los corales y las medusas, exhiben una morfología y estilos de vida diversos que se manifiestan en pólipos sésiles y medusas que nadan libremente. Como se ejemplifica en modelos establecidos como Hydra y Nematostella, las células madre y / o células proliferativas contribuyen al desarrollo y regeneración de pólipos cnidarios. Sin embargo, los mecanismos celulares subyacentes en la mayoría de las medusas, particularmente en la etapa de medusa, son en gran medida poco claros y, por lo tanto, es fundamental desarrollar un método sólido para identificar tipos de células específicas. Este artículo describe un protocolo para visualizar células proliferantes similares a tallos en la medusa hidrozoaria Cladonema pacificum. Cladonema medusae posee tentáculos ramificados que crecen continuamente y mantienen la capacidad regenerativa a lo largo de su etapa adulta, proporcionando una plataforma única con la que estudiar los mecanismos celulares orquestados por la proliferación y / o células madre. La hibridación in situ fluorescente de montaje completo (FISH) utilizando un marcador de células madre permite la detección de células madre, mientras que el marcado de pulsos con 5-etinil-2′-desoxiuridina (EdU), un marcador de fase S, permite la identificación de células en proliferación. Combinando el etiquetado de FISH y EdU, podemos detectar células madre que proliferan activamente en animales fijos, y esta técnica se puede aplicar ampliamente a otros animales, incluidas las especies de medusas no modelo.
Cnidaria es considerado un filo metazoario de ramificación basal que contiene animales con nervios y músculos, colocándolos en una posición única para comprender la evolución del desarrollo y la fisiología animal 1,2. Los cnidarios se clasifican en dos grupos principales: los antholozoos (por ejemplo, las anémonas de mar y los corales) poseen solo larvas de planula y etapas de pólipos sésiles, mientras que los medusozoos (miembros de hidrozoos, estaurozoos, esciphozoa y cubozoa) generalmente toman la forma de medusas o medusas que nadan libremente, así como larvas y pólipos de plánula. Los cnidarios comúnmente exhiben una alta capacidad regenerativa, y sus mecanismos celulares subyacentes, particularmente su posesión de células madre adultas y células proliferativas, han atraído mucha atención 3,4. Inicialmente identificadas en Hydra, las células madre hidrozoarias se encuentran en los espacios intersticiales entre las células epiteliales ectodérmicas y se conocen comúnmente como células intersticiales o células i3.
Las células i hidrozoarias comparten características comunes que incluyen multipotencia, la expresión de marcadores de células madre ampliamente conservados (por ejemplo, Nanos, Piwi, Vasa) y potencial de migración 3,5,6,7,8. Como células madre funcionales, las células i están ampliamente involucradas en el desarrollo, fisiología y respuestas ambientales de los animales hidrozoarios, lo que atestigua su alta capacidad regenerativa y plasticidad3. Si bien las células madre, similares a las células i, no se han identificado fuera de los hidrozoos, incluso en la especie modelo establecida Nematostella, las células proliferativas todavía están involucradas en el mantenimiento y la regeneración del tejido somático, así como en la línea germinal9. Como los estudios sobre el desarrollo y la regeneración del cnidario se han realizado predominantemente en animales de tipo pólipo como Hydra, Hydractinia y Nematostella, la dinámica celular y las funciones de las células madre en especies de medusas siguen sin abordarse en gran medida.
La medusa hidrozoaria Clytia hemisphaerica , una especie de medusa cosmopolita con diferentes hábitats en todo el mundo, incluyendo el Mar Mediterráneo y América del Norte, ha sido utilizada como animal modelo experimental en varios estudios de desarrollo y evolución10. Con su pequeño tamaño, fácil manejo y huevos grandes, Clytia es adecuado para el mantenimiento en laboratorio, así como para la introducción de herramientas genéticas como los métodos de transgénesis y knockout recientemente establecidos11, abriendo la oportunidad para un análisis detallado de los mecanismos celulares y moleculares subyacentes a la biología de las medusas. En el tentáculo de Clytia medusa, las células I se localizan en la región proximal, llamada bulbo, y los progenitores como los nematoblastos migran a la punta distal mientras se diferencian en distintos tipos de células, incluidos los nematocitos12.
Durante la regeneración del Clytia manubrium, el órgano oral de las medusas, las células Nanos1+ i que están presentes en las gónadas migran a la región donde se pierde el manubrio en respuesta al daño y participan en la regeneración del manubrio7. Estos hallazgos apoyan la idea de que las células I en Clytia también se comportan como células madre funcionales que están involucradas en la morfogénesis y la regeneración. Sin embargo, dado que las propiedades de las células i difieren entre animales representativos de tipo pólipo como Hydra e Hydractinia3, es posible que las características y funciones de las células madre se diversifiquen entre las especies de medusas. Además, con la excepción de Clytia, las técnicas experimentales han sido limitadas para otras medusas, y la dinámica detallada de las células proliferativas y las células madre son desconocidas13.
La medusa hidrozoaria Cladonema pacificum es un organismo modelo emergente que se puede mantener en un entorno de laboratorio sin una bomba de agua o sistema de filtración. El Cladonema medusa tiene tentáculos ramificados, una característica común en la familia Cladonematidae, y un órgano fotorreceptor llamado ocelo en la capa ectodérmica cerca del bulbo14. El proceso de ramificación del tentáculo ocurre en un nuevo sitio de ramificación que aparece a lo largo del lado adaxial del tentáculo. Con el tiempo, los tentáculos continúan alargando y ramificándose, con las ramas más viejas empujadas hacia la punta15. Además, los tentáculos de Cladonema pueden regenerarse en unos pocos días después de la amputación. Estudios recientes han sugerido el papel de las células proliferantes y las células madre en la ramificación y regeneración de tentáculos en Cladonema16,17. Sin embargo, mientras que la hibridación in situ convencional (ISH) se ha utilizado para visualizar la expresión génica en Cladonema, debido a su baja resolución, actualmente es difícil observar la dinámica de las células madre a nivel celular en detalle.
Este artículo describe un método para visualizar células madre en Cladonema por FISH y co-tinción con EdU, un marcador de proliferación celular18. Visualizamos el patrón de expresión de Nanos1, un marcador de células madre 5,17, por FISH, que permite la identificación de la distribución de células madre a nivel de una sola célula. Además, la co-tinción de la expresión de Nanos1 con el etiquetado de EdU permite distinguir células similares a las células madre que proliferan activamente. Este método para monitorear tanto las células madre como las células proliferativas se puede aplicar a una amplia gama de áreas de investigación, incluida la ramificación de tentáculos, la homeostasis tisular y la regeneración de órganos en Cladonema, y se puede aplicar un enfoque similar a otras especies de medusas.
Las células proliferantes y las células madre son fuentes celulares importantes en diversos procesos como la morfogénesis, el crecimiento y la regeneración21,22. Este artículo describe un método para teñir conjuntamente el marcador de células madre Nanos1 mediante el etiquetado de FISH y EdU en Cladonema medusae. Trabajos previos utilizando el etiquetado de EdU o BrdU han sugerido que las células proliferativas se localizan en los bulbo…
The authors have nothing to disclose.
Este trabajo fue apoyado por AMED bajo el número de subvención JP22gm6110025 (a Y.N.) y por el número de subvención JSPS KAKENHI 22H02762 (a Y.N.).
2-Mercaptoethanol | Wako | 137-06862 | |
3.1 mL transfer pipette | Thermo Scientific | 233-20S | |
5-Bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal) | Wako | 029-15043 | |
anti-DIG-POD | Roche | 11207733910 | |
Cladonema pacificum Nanos1 forward primer | 5’-AAGAGACACAGTCATTATCAAGC GA-3’ |
||
Cladonema pacificum Nanos1 reverse primer | 5’-CGACGTGTCCAATTTTACGTGCT -3’ | ||
Cladonema pacificum Piwi forward primer | 5’- AAAAGAGCAGCGGCCAGAAAGA AGGC -3’ |
||
Cladonema pacificum Piwi reverse primer | 5’- GCGGGTCGCATACTTGTTGGTA CTGGC -3’ |
||
Click-iT EdU Cell Proliferation Kit for Imaging, Alexa Fluor 488 dye | Invitrogen | C10337 | EdU kit |
Coroline off | GEX Co. ltd | N/A | chlorine neutralizer |
DIG Nucleic Acid Detection Kit Blocking Reagent | Roche | 11175041910 | blocking buffer |
DIG RNA labeling mix | Roche | 11277073910 | |
DTT | Promega | P117B | |
ECOS competent cell DH5α | NIPPON GENE | 316-06233 | competent cell |
Fast gene Gel/PCR Extraction kit | Fast gene | FG-91302 | gel extraction kit |
Fast gene plasmid mini kit | Fast gene | FG-90502 | plasmid miniprep |
Formamide | Wako | 068-00426 | |
Heparin sodium salt from porcine | SIGMA-ALDRICH | H3393-10KU | |
Isopropyl-β-D(-)-thiogalactopyranoside (IPTG) | Wako | 096-05143 | |
LB Agar | Invitrogen | 22700-025 | agar plate |
LB Broth Base | Invitrogen | 12780-052 | LB medium |
Maleic acid | Wako | 134-00495 | |
mini Quick spin RNA columns | Roche | 11814427001 | clean-up column |
NaCl | Wako | 191-01665 | |
NanoDrop OneC Microvolume UV-Vis Spectrophotometer with Wi-Fi | Thermo Scientific | ND-ONEC-W | spectrophotometer |
Polyoxyethlene (20) Sorbitan Monolaurate (Tween-20) | Wako | 166-21115 | |
PowerMasher 2 | nippi | 891300 | homogenizer |
Proteinase K | Nacarai Tesque | 29442-14 | |
RNase Inhibitor | TaKaRa | 2313A | |
RNeasy Mini kit | Qiagen | 74004 | total RNA isolation kit |
RQ1 RNase-Free Dnase | Promega | M6101 | |
Saline Sodium Citrate Buffer 20x powder (20x SSC) | TaKaRa | T9172 | |
SEA LIFE | Marin Tech | N/A | mixture of mineral salts |
T3 RNA polymerase | Roche | 11031163001 | |
T7 RNA polymerase | Roche | 10881767001 | |
TAITEC HB-100 | TAITEC | 0040534-000 | Hybridization incuvator |
TaKaRa Ex Taq | TaKaRa | RR001A | Taq DNA polymerase |
TaKaRa PrimeScript 2 1st strand cDNA Synthesis Kit | TaKaRa | 6210A | cDNA synthesis kit |
Target Clone | TOYOBO | TAK101 | pTA2 Vector |
tRNA | Roche | 10109541001 | |
TSA Plus Cyanine 5 | AKOYA Biosciences | NEL745001KT | tyramide signal amplification (TSA) technique |
Zeiss LSM 880 | ZEISS | N/A | laser scanning confocal microscope |