Summary

降低肌肉损伤风险的小鼠剂量调整阻力训练

Published: August 31, 2022
doi:

Summary

本协议描述了一种称为剂量调整阻力训练(DART)的独特技术,该技术可以纳入在小动物(例如小鼠)中进行的精确康复研究中。

Abstract

渐进式阻力训练(PRT)涉及对逐渐增加的外部负荷进行肌肉收缩,可以增加健康个体和患者群体的肌肉质量和力量。在小型和大型动物模型的临床前研究中,需要精确的康复工具来测试PRT的安全性和有效性,以维持和/或恢复肌肉质量和力量。本文中描述的PRT方法和设备可用于执行剂量调整阻力训练(DART)。DART装置可用作独立的测功机,以客观评估小鼠踝背屈肌产生的同心收缩扭矩,也可以添加到预先存在的等速测力系统中。DART设备可以根据本作品中提供的说明和开源3D打印文件,使用标准3D打印机制造。本文还描述了一项研究的工作流程,该研究将单次DART引起的收缩引起的肌肉损伤与2B/R2型肢带肌营养不良症小鼠模型(BLAJ小鼠)中由相当的等长收缩(ISOM)引起的肌肉损伤进行比较。来自八只BLAJ小鼠(每种情况四只动物)的数据表明,单次DART或ISOM损伤的胫骨前肌(TA)不到10%,其中DART的损伤小于ISOM。

Introduction

运动对骨骼肌具有许多健康益处(在Vina等人1中进行了评论)。具体来说,渐进式阻力训练(PRT)涉及对逐渐增加的外部负荷(例如杠铃,哑铃,电缆滑轮重量电路)进行肌肉收缩,已知有助于增加健康个体和患者群体的肌肉质量和力量(在以前的出版物23中进行了综述。).PRT基于过载原理,该原理指出,当肌肉对逐渐增大的外部负荷收缩时,它通过增加其生理横截面积以及产生力的能力来适应4。啮齿动物PRT的现有模型包括爬梯,对尾部施加阻力,激动剂肌肉共同收缩对抗拮抗剂的阻力,使用加重安全带跑步,由电击引起的蹲下运动,以及抵抗轮子奔跑5,6789,10(在以前的出版物中回顾1112).然而,目前还没有研究工具可以在小鼠中进行精确的肌肉靶向,剂量调整的PRT,这与人类临床研究和实践中使用的PRT方法和设备非常相似1213。这限制了研究人员在小鼠的基础和临床前研究中研究精确剂量PRT的安全性和有效性的能力。

为了克服这一障碍,本研究基于现代体育馆阻力训练设备中使用的电缆滑轮重量电路设计,开发了一种PRT方法和设备141516。这种PRT方法称为剂量调整阻力训练(DART),该设备称为DART设备。除了作为精密康复训练工具的功能外,DART设备还可以用作独立仪器,客观地评估小鼠胫骨前(TA)肌肉可以产生的最大同心收缩扭矩,类似于在人类中评估一次重复最大值(1RM,在保持良好状态的同时可以成功抬起/移动/按压/蹲一次的最大负荷)1718.DART装置还可以与定制或商用等速测功机结合使用,以测量小鼠TA肌肉产生的峰值等距手足搐年力(与人类的最大自主收缩[MVC]相当),然后执行剂量调整PRT,阻力基于峰值强伤风力(例如,峰值力的50%)。

本文介绍了DART设备的构造,并解释了如何将其与先前出版物19202122中描述的定制测功机相结合以评估收缩扭矩并执行DART。该研究还描述了如何使用DART装置来比较由单次DART(4组10次同心偏向收缩,50%1RM)引起的运动引起的肌肉损伤与在2B型肢带肌营养不良症小鼠模型中由相当的等长收缩(4组10次等长收缩)引起的损伤。 或LGMDR2)2324。所研究的小鼠模型缺乏一种称为dysferlin的蛋白质,该蛋白质在保护骨骼肌免受损伤性离心收缩后延迟性肌肉损伤方面起着重要作用22,25,2627,282930.在地狱吼缺陷的雄性小鼠中也证明,同心偏向的强制运动不像偏心的强迫运动那样具有破坏性,并且先前暴露于同心偏向训练可以防止随后一阵偏心收缩的伤害22。由于进行本研究是为了测试目前的DART方法和设备在执行剂量调整,同心偏置阻力训练中的可行性,因此选择雄性地狱缺陷小鼠进行调查,以将DART设备的新数据与以前的数据进行比较。在未来的研究中,将包括雌性BLAJ小鼠,以研究性别作为与DART反应相关的生物变量的影响。对~1.5岁的小鼠进行了研究,因为它们已经在许多肌肉群中发生了营养不良变化,因此,模拟了已经有肌肉无力和消瘦并正在寻求康复护理以维持肌肉质量和力量的患者的病理生理状态26

Protocol

本文中描述的实验由美国密歇根州底特律韦恩州立大学的机构动物护理和使用委员会 (IACUC) 根据实验动物护理和使用指南(1996 年,由美国国家学院出版社出版,2101 Constitution Ave. NW,华盛顿特区 20055,美国)批准。B6.本研究使用模型LGMD2B / R2的A-Dysfprmd / GeneJ小鼠(又名BLAJ小鼠,雄性,~1.5岁)。小鼠是从商业来源获得的(见 材料表)。 1. 研?…

Representative Results

研究了年龄~1.5岁的BLAJ雄性小鼠。BLAJ小鼠模拟人类肌肉疾病LGMD2B / R2。这些小鼠特别容易受到单次离心肌肉收缩引起的延迟性肌肉损伤的影响22,29。因此,选择BLAJ小鼠进行这些研究,以了解DART是否可以通过精确调整TA肌肉必须以同心偏置方式工作的阻力来以非伤害方式进行。如果发现DART对BLAJ小鼠无害,那么它可能是一种无害的抵抗训练形式,可以单?…

Discussion

本文提供了有关如何构建设备以执行一种称为剂量调整阻力训练 (DART) 的精确康复训练的分步说明。这项工作还描述了DART设备和方法在训练研究中的应用,以比较单次DART后3天的肌肉损伤(DART组)与可比较的等距训练后3天的损伤(ISOM组)。

协议中的关键步骤是DART设备3435的正确构建,执行DART或ISOM训练所涉及的精确步骤,肌肉组织的?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究由Jain基金会的赠款,NICHD的R03HD091648,NIH P2CHD086843下的AR3T的试点资助,韦恩州立大学EACPHS的FRAP奖,韦恩州立大学的教师启动包,以及1R01AR079884-01(Peter L. Jones PI)到JAR的分包合同。这项研究还得到了美国物理治疗协会 – 密歇根州(APTA-MI)对JMB,MEP和JAR的研究资助。作者感谢Renuka Roche博士(密歇根州东密歇根大学副教授)批判性地阅读手稿并提供反馈。作者感谢Anselm D. Motha先生对3D打印的建议。作者感谢那些在 https://www.jain-foundation.org/patient-physician-resources/patient-stories 耆那教基金会网站上分享他们的故事的疾病患者,特别是他们的运动经历。

Materials

AnMiao Star 608 Ceramic Ball Bearing Anmiao Star (N/A) AMS127 High precision, low friction wheel bearing.  If make and model is not commercially available, an alternative version of a 608 low-friction wheel bearing, 8 mm bore diameter,  22 mm outside diameter, with silicon nitride ceramic balls in 420 stainless steel housing should suffice.  Excess friction in the wheel bearing will adversely impact performance of the DART device and will increase overall resistance to muscle contractions.
Axio Scope.A1 microscope Carl Zeiss (Peabody, MA) Product #Axio Scope.A1 Light and fluorescence microscope
B6.A-Dysfprmd/GeneJ (a.k.a. BLAJ mice) The Jackson Laboratory (Bar Harbor, ME).  Special colony maintained by The Jain Foundation Inc. for collaborators who study dysferlin. Stock #012767 Dysferlin deficient mice that model human limb girdle muscular dystrophy type 2B/R2.
Bipolar, transcutaneous, neuromuscular electrical stimulation (NMES) electrode Harvard Apparatus, Holliston, MA BS4 50–6824 Electrode for NMES.  If this electrode is not commercially available, please contact corresponding author for alternatives.
Coplin Staining Dish ThermoFisher (Waltham, MA) Catalog No. S17495 Staining dish/jar for hematoxylin and eosin (H&E) staining of sections
Cura 4.4.1. Software Ultimaker, Utrecht, Netherlands Ultimaker Cura 4.4.1. Slicing software to convert stereolithography files into G-CODE files
Deltaphase isothermal gel heating pad Braintree Scientific (Braintree, MA) Item #39DP Heating pad to provide thermal support to animals while under anesthesia
Eosin Y Millipore Sigma (Burlington, MA) HT110132-1L Pink cytoplasmic stain
Gorilla Super Glue The Gorilla Glue Company (Cincinnati, OH) Gorilla Super Glue Micro Precise Cyanoacrylate adhesive to bond PLA components
Hematoxylin solution, Gill No.3 Millipore Sigma (Burlington, MA) GHS332-1L Dark blue stain for nuclei
HM525NX cryostat ThermoFisher (Waltham, MA) Catalog #HM525NX Cryostat to make frozen sections of muscle
Lab Wipes.  Kimberly-Clark Professional Kimtech Science Kimwipes Delicate Task Wipers, 1-Ply ThermoFisher (Waltham, MA) Catalog No. 06-666.  Manufacturer #34120 Laboratory wipes to blot mineral oil from muscle tissue before snap freezing and for other purposes.
Labview 2014 National Instruments, Austin, Texas, USA Labview 2014 Software for custom-written programs/routines that operate the dynamometer and trigger the NMES stimulator.
Liquid nitrogen HDPE Dewar Flasks ThermoFisher (Waltham, MA) S34074B.  Thermo Scientific 41502000/EMD Flask to hold liquid nitrogen for snap freezing muscle or other tissue
Magic depilatory cream Softsheen Carson (New York, NY) N/A Razorless hair removal cream
Metal alligator clip JINSHANGTOPK (web-based business) 24Pcs 51mm Metal Alligator Clip Spring Clamps Spring clamp to hold tibial pin
Micrscope slides Globe Scientific (Mahwah, NJ) 1354W. Diamond White Glass Slides Charged microscope slides
Mineral Oil ThermoFisher (Waltham, MA) BP26291 Mineral oil to cryoprotect muscle tissue before snap freezing
Monoprice Premium 3D Printer Filament PLA Monoprice (Rancho Cucamonga, CA) #11778 Premium 3D Printer Filament PLA 1.75mm 1 kg/spool, Gray.  This is the material used to 3D print device components.
Monoprice Select Mini V2 3D printer Monoprice (Rancho Cucamonga, CA) Mini V2 3D 3D printer for computer-aided fabrication of device components.
NIH Image software National Instritues of Health (NIH, Bethesda, MD) NIH Image for Windows Image processing and analysis software used to quantify area of muscle damage.  NIH Image is also known as Image J.
Photoshop CS4 Adobe (San Jose, CA) Creative Suite (CS4). 64 bit version for Windows Image processing and analysis software used to generate tiled/stiched images of entire muscle cross-section from images of indvidual overlapping fields
PSIU6 stimulation isolation unit Grass Instruments (West Warwick, RI) PSIU6 isolation unit Isolation unit for NMES.  Stimulators, such as Model 4100 from A-M come with a built in stimulation isoloation unit
Roboz 4-0 silk black braided suture material Roboz Surgical (Gaithersburg, MD) Roboz Surgical SUT152 Suture material to connect DART device footplate to dynamometer footplate or resistance for resistance training
S48 square pulse stimulator Grass Instruments (West Warwick, RI) S48 Stimulator Laboratory electrical stimulator for NMES .  If this stimulator is not commercially available, Model 4100 Isolated High Power Stimulator from A-M systems could be an alternative.  Please contact co-author Jones for more information.
Scott’s bluing reagent Ricca Chemical Company (Arlington, TX) 6697-32 Bluing solution that intensifies hematoxylin nuclear staining
SigmaStat version 3.5 Systat Software (San Jose, CA) SigmaStat version 3.5 Statistical software package for statistical analyses
Tabletop isoflurane vaporizer VetEquip (Livermore, CA) Item #901801 Inhaled tabletop anesthesia system
Triple antibiotic first aid ointment Global Health Products (wed-based business) Globe Triple Antibiotic First Aid Ointment, 1 oz (2-Pack) First Aid Antibiotic Ointment Antibiotic ointment applied on tibial pin as part of post-procedural care

References

  1. Vina, J., Sanchis-Gomar, F., Martinez-Bello, V., Gomez-Cabrera, M. C. Exercise acts as a drug; The pharmacological benefits of exercise. British Journal of Pharmacology. 167 (1), 1-12 (2012).
  2. Murton, A. J., Greenhaff, P. L. Resistance exercise and the mechanisms of muscle mass regulation in humans: Acute effects on muscle protein turnover and the gaps in our understanding of chronic resistance exercise training adaptation. The International Journal of Biochemistry & Cell Biology. 45 (10), 2209-2214 (2013).
  3. Pepin, M. E., Roche, J. A., Malek, M. H., Chandler, T. J., Brown, L. E. Strength Training for Special Populations. Conditioning for Strength and Human Performance. , 547-570 (2019).
  4. Helland, C., et al. Training strategies to improve muscle power: Is Olympic-style weightlifting relevant. Medicine and Science in Sports and Exercise. 49 (4), 736-745 (2017).
  5. Souza, M. K., et al. l-Arginine supplementation blunts resistance exercise improvement in rats with chronic kidney disease. Life Sciences. 232, 116604 (2019).
  6. Schmoll, M., et al. SpillOver stimulation: A novel hypertrophy model using co-contraction of the plantar-flexors to load the tibial anterior muscle in rats. PloS One. 13 (11), 0207886 (2018).
  7. Adams, G. R., Haddad, F., Bodell, P. W., Tran, P. D., Baldwin, K. M. Combined isometric, concentric, and eccentric resistance exercise prevents unloading-induced muscle atrophy in rats. Journal of Applied Physiology. 103 (5), 1644-1654 (2007).
  8. Guedes, J. M., et al. Muscular resistance, hypertrophy and strength training equally reduce adiposity, inflammation and insulin resistance in mice with diet-induced obesity. Einstein. 18, (2019).
  9. Zhu, W. G., et al. Weight pulling: A novel mouse model of human progressive resistance exercise. Cells. 10 (9), 2459 (2021).
  10. Call, J. A., McKeehen, J. N., Novotny, S. A., Lowe, D. A. Progressive resistance voluntary wheel running in the mdx mouse. Muscle & Nerve. 42 (6), 871-880 (2010).
  11. Strickland, J. C., Smith, M. A. Animal models of resistance exercise and their application to neuroscience research. Journal of Neuroscience Methods. 273, 191-200 (2016).
  12. Greising, S. M., Basten, A. M., Schifino, A. G., Call, J. A., Greising, S. M., Call, J. A. Considerations for Small Animal Physical Rehabilitation. Regenerative Rehabilitation: From Basic Science to the Clinic. , 39-59 (2022).
  13. Roche, J. A., Greising, S. M., Call, J. A. Regenerative Rehabilitation for Nonlethal Muscular Dystrophies. Regenerative Rehabilitation: From Basic Science to the Clinic. , 61-84 (2022).
  14. Schott, N., Johnen, B., Holfelder, B. Effects of free weights and machine training on muscular strength in high-functioning older adults. Experimental Gerontology. 122, 15-24 (2019).
  15. . Dr. Gustav Zander’s Victorian-Era Exercise Machines Made the Bowflex Look Like Child’s Play Available from: https://www.smithsonianmag.com/smithsonian-institution/gustav-zander-victorian-era-exercise-machines-bowflex-180957758/ (2016)
  16. Hansson, N., Ottosson, A. Nobel prize for physical therapy? Rise, fall, and revival of medico-mechanical institutes. Physical Therapy. 95 (8), 1184-1194 (2015).
  17. ACSM. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Medicine and Science in Sports and Exercise. 41 (3), 687-708 (2009).
  18. Suchomel, T. J., Nimphius, S., Bellon, C. R., Hornsby, W. G., Stone, M. H. Training for muscular strength: Methods for monitoring and adjusting training intensity. Sports Medicine. 51 (10), 2051-2066 (2021).
  19. Bloch, R. J., et al. Small-Animal Unit for Muscle Injury, Muscle Testing and Muscle Training in Vivo. US Patent. , (2012).
  20. Lovering, R. M., Roche, J. A., Goodall, M. H., Clark, B. B., McMillan, A. An in vivo rodent model of contraction-induced injury and non-invasive monitoring of recovery. Journal of Visualized Experiments. (51), e2782 (2011).
  21. Begam, M., et al. Diltiazem improves contractile properties of skeletal muscle in dysferlin-deficient BLAJ mice, but does not reduce contraction-induced muscle damage. Physiological Reports. 6 (11), 13727 (2018).
  22. Begam, M., et al. The effects of concentric and eccentric training in murine models of dysferlin-associated muscular dystrophy. Muscle and Nerve. 62 (3), 393-403 (2020).
  23. Straub, V., Murphy, A., Udd, B. 229th ENMC international workshop: Limb girdle muscular dystrophies – Nomenclature and reformed classification Naarden, the Netherlands. Neuromuscular Disorders. 28 (8), 702-710 (2018).
  24. . DYSFERLIN Available from: https://www.omim.org/entry/603009 (2021)
  25. Millay, D. P., et al. Genetic manipulation of dysferlin expression in skeletal muscle: Novel insights into muscular dystrophy. American Journal of Pathology. 175 (5), 1817-1823 (2009).
  26. Nagy, N., et al. Hip region muscular dystrophy and emergence of motor deficits in dysferlin-deficient Bla/J mice. Physiological Reports. 5 (6), 13173 (2017).
  27. Roche, J. A., Lovering, R. M., Bloch, R. J. Impaired recovery of dysferlin-null skeletal muscle after contraction-induced injury in vivo. Neuroreport. 19 (16), 1579-1584 (2008).
  28. Roche, J. A., et al. Extensive mononuclear infiltration and myogenesis characterize recovery of dysferlin-null skeletal muscle from contraction-induced injuries. American Journal of Physiology: Cell Physiology. 298 (2), 298-312 (2010).
  29. Roche, J. A., Ru, L. W., Bloch, R. J. Distinct effects of contraction-induced injury in vivo on four different murine models of dysferlinopathy. Journal of Biomedicine and Biotechnology. 2012, 134031 (2012).
  30. Roche, J. A., et al. Myofiber damage precedes macrophage infiltration after in vivo injury in dysferlin-deficient A/J mouse skeletal muscle. American Journal of Pathology. 185 (6), 1686-1698 (2015).
  31. Ingalls, C. P., Warren, G. L., Zhang, J. Z., Hamilton, S. L., Armstrong, R. B. Dihydropyridine and ryanodine receptor binding after eccentric contractions in mouse skeletal muscle. Journal of Applied Physiology. 96 (5), 1619-1625 (2004).
  32. Dutton, M. . Orthopaedics for the Physical Therapist Assistant. , 238 (2011).
  33. Begam, M., Abro, V. M., Mueller, A. L., Roche, J. A. Sodium 4-phenylbutyrate reduces myofiber damage in a mouse model of Duchenne muscular dystrophy. Applied Physiology, Nutrition, and Metabolism. Physiologie Appliquée, Nutrition et Métabolisme. 41 (10), 1108-1111 (2016).
  34. Tully, J. J., Meloni, G. N. A scientist’s guide to buying a 3D printer: How to choose the right printer for your laboratory. Analytical Chemistry. 92 (22), 14853-14860 (2020).
  35. Schwiening, C. 3D printing primer for physiologists. Physiology News. (101), (2015).
  36. Begam, M., Roche, J. A. Damaged muscle fibers might masquerade as hybrid fibers – A cautionary note on immunophenotyping mouse muscle with mouse monoclonal antibodies. European Journal of Histochemistry. 62 (3), 2896 (2018).
  37. Lott, D. J., et al. Safety, feasibility, and efficacy of strengthening exercise in Duchenne muscular dystrophy. Muscle & Nerve. 63 (3), 320-326 (2021).
  38. Lindsay, A., Larson, A. A., Verma, M., Ervasti, J. M., Lowe, D. A. Isometric resistance training increases strength and alters histopathology of dystrophin-deficient mouse skeletal muscle. Journal of Applied Physiology. 126 (2), 363-375 (2019).
  39. Dalkin, W., Taetzsch, T., Valdez, G. The fibular nerve Injury method: A reliable assay to identify and test factors that repair neuromuscular junctions. Journal of Visualized Experiments. (114), e54186 (2016).
  40. Amend, S. R., Valkenburg, K. C., Pienta, K. J. Murine hind limb long bone dissection and bone marrow isolation. Journal of Visualized Experiments. (110), e53936 (2016).
  41. Gerlinger-Romero, F., et al. Non-invasive assessment of dorsiflexor muscle function in mice. Journal of Visualized Experiments. (143), e58696 (2019).
  42. Brightwell, C. R., et al. In vivo measurement of knee extensor muscle function in mice. Journal of Visualized Experiments. (169), e62211 (2021).
  43. Pratt, S. J. P., Lawlor, M. W., Shah, S. B., Lovering, R. M. An in vivo rodent model of contraction-induced injury in the quadriceps muscle. Injury. 43 (6), 788-793 (2012).
  44. Shields, R. K. Precision rehabilitation: How lifelong healthy behaviors modulate biology, determine health, and affect populations. Physical Therapy. 102 (1), 248 (2022).
  45. . Medical Rehabilitation Research Resource Network (MR3N). Precision Rehabilitation – Inaugural Scientific Retreat Available from: https://ncmrr.org/education-training/archived-presentations/precision-rehab-archive (2021)
  46. Roche, J. A., et al. Minimally invasive muscle embedding generates donor-cell-derived muscle fibers that express desmin and dystrophin. Military Medicine. 185, 423-429 (2020).
  47. Roche, J. A., et al. Minimally invasive muscle embedding (MIME), facilitates the development of functional muscle fibers of human cadaveric origin, in host mice. The FASEB Journal. 33, 602 (2019).

Play Video

Cite This Article
Begam, M., Narayan, N., Mankowski, D., Camaj, R., Murphy, N., Roseni, K., Pepin, M. E., Blackmer, J. M., Jones, T. I., Roche, J. A. Dosage-Adjusted Resistance Training in Mice with a Reduced Risk of Muscle Damage. J. Vis. Exp. (186), e64000, doi:10.3791/64000 (2022).

View Video