Summary

Criação em massa e estudos moleculares em insetos de peste de Tortricidae

Published: March 25, 2022
doi:

Summary

O presente protocolo descreve o método de criação de insetos de peste tortricida nos laboratórios. Os procedimentos para distinguir o sexo dos insetos e extrair ácidos nucleicos para sequenciamento de alto rendimento são estabelecidos usando duas pragas tortricidas.

Abstract

O tortricidae (Lepidoptera), comumente conhecido como tortrix ou mariposas de rolo compressor, compreende muitas pragas agrícolas e florestais, que causam sérias perdas agrícolas. Para entender a biologia dessas mariposas de pragas, técnicas fundamentais têm sido de alta demanda. Aqui, métodos para criação em massa, observações e estudos moleculares são desenvolvidos usando duas tortrix de chá, Homona magnanima e Adoxophyes honmai (Lepidoptera: Tortricidae). Os insetos foram criados em massa com dieta artificial fatiada e mantidos pela endogamia por mais de 100 gerações, considerando suas características biológicas. Insetos têm vários dimorfismos sexuais; portanto, é difícil distinguir o sexo durante os estágios de desenvolvimento, que impediram ensaios subsequentes. O presente trabalho destacou que o sexo das larvas de tortricóides poderia ser determinado observando testículos ou coloração de orceina láctica-actic para visualizar o cromossomo W específico feminino. Além disso, utilizando os métodos de determinação sexual, o presente estudo possibilitou extrações de ácido nucleico a partir de embriões determinados por sexo e aplicação para sequenciamento de alto rendimento. Essas dicas são aplicáveis para outros insetos pragas e facilitarão estudos morfológicos e genéticos.

Introduction

Os insetos lepidopteranos representam mais de 10% de todas as espécies vivas descritas1, e certas espécies de taxas causam danos graves às plantas e graves perdas agrícolas 2,3. Embora estudos moleculares e genéticos tenham sido desenvolvidos usando insetos modelo, como o bicho-da-seda Bombyx mori 4,5, os insetos pragas permanecem sem investigação, em parte devido às dificuldades para criar e manusear 6,7. Portanto, estudos e técnicas fundamentais são necessários para entender a biologia desses insetos pestes não-modelo.

O Tortricidae (Lepidoptera), comumente conhecido como tortrix ou mariposas de rolo compressor, compreende muitas pragas agrícolas e florestais8. Da taxa de insetos, a tortrix oriental Homona magnanima Diakonoff e a tortrix de frutas de verão Adoxophyes honmai Yasuda são pragas polifagosas graves conhecidas por danificar árvores de chá no leste da Ásia7. As duas espécies estavam agrupamentos de ovos planos e ovais (ou massas de ovos) consistindo de ovos finos, macios e frágeis cobertos por secreções maternas. Embora os estágios de embriogênese sejam cruciais para o desenvolvimento de insetos e determinações sexuais9, as estruturas dos ovos impedem que uma análise mais aprofundada entenda a biologia dos insetos. É importante superar as dificuldades para um estudo mais aprofundado sobre pragas que oviposim essa complexa massa de ovos.

Aqui, para entender a biologia dos tortricídeos, métodos para criação em massa, observações e estudos moleculares foram desenvolvidos usando A. honmai e H. magnanima. Primeiro, os métodos de criação em massa mantêm os dois tortricídeos acima de 100 gerações por inserção. A separação dos ovos da massa de ovos em escala concatenada facilitou a observação embrigênese dos tortricídeos usando solventes alcalinos e orgânicos previamente desenvolvidos a partir de técnicas usadas em moscas10. Além disso, o presente estudo estabeleceu a discriminação sexual de pequenos embriões, desenvolvendo métodos de coloração da cromatina sexual de fêmeas lepidopteranas utilizando orceina láctica-acética11. Combinando esses métodos, ácidos nucleicos de alta qualidade e quantidade foram extraídos de embriões determinados por sexo, o que de outra forma era difícil de estabelecer6. O RNA extraído foi utilizado para sequenciamento de próxima geração. Coletivamente, os métodos aqui apresentados aplicam-se a outros insetos lepidopteranos e outros insetos taxa.

Protocol

1. Coleta de insetos e criação em massa Coletar insetos tortricídeos de campos após referênciaspublicadas anteriormente 8,12.NOTA: As larvas H. magnanima e A. honmai são coletadas de folhas de chá danificadas (Figura 1A); adultos são atraídos usando luz UV portátil de 4 W (comprimento de onda de 365 nm, ver Tabela de Materiais, Figura 1B<…

Representative Results

Estabelecimento de linhas de hospedagem e sua manutençãoA viabilidade das larvas coletadas em campo é diferentemente atribuída à localização do campo, estações e condições de criação (por exemplo, 90% da viabilidade em Taiwan, Taoyuan, como mostrado em Arai et al.12). Aproximadamente 30%-50% dos pares gerarão a próxima geração como de costume. Para H. magnanima e A. honmai, as matrilinas foram mantidas por endogamia por mais de 100 gerações…

Discussion

O tortrida compreende várias pragas agrícolas e florestais; o presente estudo apresentou métodos para retrocoterar ao longo de gerações, observar a embriogênese e o sexo dos insetos e realizar análises moleculares utilizando embriões maduros.

Um dos obstáculos para o estudo de insetos de pragas é estabelecer métodos de criação. Especialmente, a endogamia às vezes afeta negativamente a aptidão da espécie. A redução do condicionamento físico pelo inerido, chamada de depressão…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Os autores desejam reconhecer o apoio da Sociedade japonesa para a Promoção da Ciência (JSPS) Bolsas de Pesquisa para Jovens Cientistas [Grant Number 19J13123 e 21J00895].

Materials

1/2 ounce cup FP CHUPA CP070009 insect rearing; https://www.askul.co.jp/p/6010417/
1/2 ounce cup lid FP CHUPA CP070011 insect rearing; https://www.askul.co.jp/p/6010434/?int_id=recom_DtTogether
99.7% acetic acid FUJIFILM Wako Chemicals Co., Osaka, Japan 36289 fixation; https://labchem-wako.fujifilm.com/jp/product/detail/W01ALF036289.html
Agilent 2100 Bioanalyzer Agilent Technologies not shown Nucleic acids quantification; https://www.agilent.com/en/product/automated-electrophoresis/bioanalyzer-systems/bioanalyzer-instrument
Agilent RNA6000 nano kit Agilent Technologies 5067-1511 Nucleic acids quantification; https://www.agilent.com/cs/library/usermanuals/Public/G2938-90034_RNA6000Nano_KG
.pdf
benzalkonium chloride solution Nihon Pharmaceutical Co., Ltd No.4987123116046 Sterilization; https://www.nihon-pharm.co.jp/consumer/products/disinfection.html
Cotton AOUME 8-1611-02 insect rearing; https://item.rakuten.co.jp/athlete-med/10006937/?scid=af_pc_etc&sc2id=af_113_0_1
DAPI solution Dojindo, Tokyo, Japan 340-07971 stainings; https://www.dojindo.co.jp/products/D523/
Disodium Hydrogenphosphate FUJIFILM Wako Chemicals Co. 4.98748E+12 Na2HPO4; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0119-0286.html
dsDNA HS quantification kit Invitrogen Q33231 Nucleic acids quantification; https://www.thermofisher.com/order/catalog/product/Q33230?SID=srch-srp-Q33230
Econospin RNA II column Epoch Life Science Inc. EP-11201 RNA extraction; http://www.epochlifescience.com/Product/SpinColumn/minispin.aspx
Ethanol FUJIFILM Wako Chemicals Co., Osaka, Japan 4.98748E+12 fixation; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0105-0045.html
Ethylenediamine-N,N,N',N'-tetraacetic Acid Tetrasodium Salt Tetrahydrate (4NA) FUJIFILM Wako Chemicals Co. 4.98748E+12 Cell lysis buffer (EDTA); https://labchem-wako.fujifilm.com/jp/product/detail/W01T02N003.html
Glassine paper HEIKO 2100010 insect rearing; https://www.monotaro.com/p/8927/0964/?utm_id=g_pla&
utm_medium=cpc&utm_source=
Adw
heat block WSC-2620 PowerBLOCK ATTO, Tokyo, Japan 4002620 incubation; https://www.attoeng.site/
heptane FUJIFILM Wako Chemicals Co., Osaka, Japan 4.98748E+12 fixation; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0108-0015.html
INSECTA LF Nosan Co., Ltd not shown Artificial diet; https://www.nosan.co.jp/business/fodder/ist.htm
ISOGENII Nippon Gene 311-07361 RNA extraction; https://www.nippongene.com/siyaku/product/extraction/isogen2/isogen2.html
isopropanol FUJIFILM Wako Chemicals Co. 4.98748E+12 nucleic acids extraction; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0232-0004.html
Lactic acid FUJIFILM Wako Chemicals Co. 4.98748E+12 Stainings; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0112-0005.html
methanol FUJIFILM Wako Chemicals Co., Osaka, Japan 4.98748E+12 fixation; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0113-0182.html
MSV-3500 vortex Biosan BS-010210-TAK Voltex mixer; https://biosan.lv/products/-msv-3500-multi-speed-vortex/
Nano Photometer NP 80 Implen not shown Nucleic acids quantification; https://www.implen.de/product-page/implen-nanophotometer-np80-microvolume-cuvette-spectrophotometer/tech-specs/
Natural pack wide Inomata chemical 1859 insect rearing; https://www.monotaro.com/g/03035766/?t.q=%E3%83%8A%E3%83%81%E3%83%A5%E3%
83%A9%E3%83%AB%E3%83%91%
E3%83%83%E3%82%AF%E3%83%
AF%E3%82%A4%E3%83%89
NEBNext Ultra II RNA Library Prep Kit for Illumina New England BioLabs E7770S Library preparation; https://www.nebj.jp/products/detail/2039
orcein FUJIFILM Wako Chemicals Co. 4.98748E+12 Stainings; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0115-0094.html
Paraformaldehyde FUJIFILM Wako Chemicals Co. 160-16061 fixation; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0116-1606.html
Polyoxyethylene(20) Sorbitan Monolaurate FUJIFILM Wako Chemicals Co. 4.98748E+12 Tween-20; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0116-2121.html
Portable UV Black Light (4W, 365nm wavelength) Southwalker Co., Ltd., Kanagawa, Japan not shown Insect collection; http://www.southwalker.com/shopping/?pid=1364614057-467328
Potassium Chloride FUJIFILM Wako Chemicals Co. 4.98748E+12 KCl; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0116-0354.html
Potassium Dihydrogen Phosphate FUJIFILM Wako Chemicals Co. 4.98748E+12 KH2PO4; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0116-0424.html
ProLong Diamond Antifade Mountant Invitrogen, MA, USA P36965 antifade; https://www.thermofisher.com/order/catalog/product/P36965
Proteinase K Solution Merck 71049-4CN DNA extraction; https://www.merckmillipore.com/JP/ja/product/Proteinase-K-Solution-600-mAU-ml,EMD_BIO-71049
protein precipitation solution Qiagen 158912 DNA extraction; https://www.qiagen.com/us/products/discovery-and-translational-research/lab-essentials/buffers-reagents/puregene-accessories/?cmpid=PC_DA_NON_
BIOCOMPARE_ProductListing_
0121_RD_MarketPlace_ProductC
Qubit V4 Invitrogen Q33238 Nucleic acids quantification; https://www.thermofisher.com/order/catalog/product/Q33238
rifampicin FUJIFILM Wako Chemicals Co., Osaka, Japan 4.98748E+12 Sterilization; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0118-0100.html
RNA HS quantification kit Invitrogen Q32855 Nucleic acids quantification; https://www.thermofisher.com/order/catalog/product/Q32852
RNase solution Nippon Gene 313-01461 RNA extraction; https://www.nippongene.com/siyaku/product/modifying-enzymes/rnase-a/rnase-s.html
Silk Mate 2S Nosan Co., Ltd not shown Artificial diet; https://www.nosan.co.jp/business/fodder/ist.htm
Sodium Chloride FUJIFILM Wako Chemicals Co. 4.98748E+12 NaCl; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0119-0166.html
Sodium Dodecyl Sulfate FUJIFILM Wako Chemicals Co. 4.98748E+12 Cell lysis buffer (SDS); https://labchem-wako.fujifilm.com/jp/product/detail/W01W0119-1398.html
sodium hypochlorite aqueous solution FUJIFILM Wako Chemicals Co., Osaka, Japan 4.98748E+12 egg separation; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0119-0220.html
Tetracycline Hydrochloride FUJIFILM Wako Chemicals Co., Osaka, Japan 4.98748E+12 Sterilization; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0120-1656.html
Tris-HCl FUJIFILM Wako Chemicals Co. 4.98748E+12 Cell lysis buffer; https://labchem-wako.fujifilm.com/jp/product/detail/W01W0120-1536.html
ultra-pure distilled water Invitrogen 10977023 RNA extraction; https://www.thermofisher.com/order/catalog/product/10977015

References

  1. Gaston, K. J. The magnitude of global insect species richness. Conservation Biology. 5 (3), 283-296 (1991).
  2. Pogue, M. A world revision of the genus Spodoptera Guenée (Lepidoptera: Noctuidae). Memoirs of the American Entomological Society. 43, 1 (2002).
  3. Matsuura, H., Naito, A. Studies on the cold-hardiness and overwintering of Spodoptera litura F. (Lepidoptera: Noctuidae): VI. Possible overwintering areas predicted from meteorological data in Japan. Applied Entomology and Zoology. 32 (1), 167-177 (1997).
  4. Mita, K., et al. The construction of an EST database for Bombyx mori and its application. Proceedings of the National Academy of Sciences of the United States of America. 100 (24), 14121-14126 (2003).
  5. Kawamoto, M., et al. High-quality genome assembly of the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology. 107, 53-62 (2019).
  6. Fukui, T., et al. In vivo masculinizing function of the Ostrinia furnacalis Masculinizer gene. Biochemical and Biophysical Research Communications. 503 (3), 1768-1772 (2018).
  7. Arai, H., Ishitsubo, Y., Nakai, M., Inoue, M. N. A simple method to disperse eggs from lepidopteran scale-like egg masses and to observe embryogenesis. Entomological Science. 25 (1), 12497 (2022).
  8. vander Geest, L. P., Evenhuis, H. H. . Tortricid pests: their biology, natural enemies and control. , (1991).
  9. Kiuchi, T., et al. A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature. 509 (7502), 633-636 (2014).
  10. Rand, M. D., Kearney, A. L., Dao, J., Clason, T. Permeabilization of Drosophila embryos for introduction of small molecules. Insect Biochemistry and Molecular Biology. 40 (11), 792-804 (2010).
  11. Kageyama, D., Traut, W. Opposite sex-specific effects of Wolbachia and interference with the sex determination of its host Ostrinia scapulalis. Proceedings of the Royal Society B. 271 (1536), 251-258 (2004).
  12. Arai, H., Lin, S. R., Nakai, M., Kunimi, Y., Inoue, M. N. Closely related male-killing and nonmale-killing Wolbachia strains in the oriental tea tortrix Homona magnanima. Microbial Ecology. 79 (4), 1011-1020 (2020).
  13. Schalamun, M., et al. Harnessing the MinION: An example of how to establish long-read sequencing in a laboratory using challenging plant tissue from Eucalyptus pauciflora. Molecular Ecology Resources. 19 (1), 77-89 (2019).
  14. Winnebeck, E. C., Millar, C. D., Warman, G. R. Why does insect RNA look degraded. Journal of Insect Science. 10 (1), 159 (2010).
  15. Ivey, C. T., Carr, D. E., Eubanks, M. D. Effects of inbreeding in Mimulus guttatus on tolerance to herbivory in natural environments. Ecology. 85 (2), 567-574 (2004).
  16. Saccheri, I., et al. Inbreeding and extinction in a butterfly metapopulation. Nature. 392 (6675), 491-494 (1998).
  17. Crnokrak, P., Roff, D. A. Inbreeding depression in the wild. Heredity. 83 (3), 260-270 (1999).
  18. Keller, L. F., Waller, D. M. Inbreeding effects in wild populations. Trends in Ecology & Evolution. 17 (5), 230-241 (2002).
  19. Margaritis, L. H., Kafatos, F. C., Petri, W. H. The eggshell of Drosophila melanogaster. I. Fine structure of the layers and regions of the wild-type eggshell. Journal of Cell Science. 43 (1), 1-35 (1980).
  20. Sugimoto, T. N., Ishikawa, Y. A male-killing Wolbachia carries a feminizing factor and is associated with degradation of the sex-determining system of its host. Biology Letters. 8 (3), 412-415 (2012).

Play Video

Cite This Article
Arai, H., Ishitsubo, Y., Nakai, M., Inoue, M. N. Mass-Rearing and Molecular Studies in Tortricidae Pest Insects. J. Vis. Exp. (181), e63737, doi:10.3791/63737 (2022).

View Video