Summary

毛细管流通过三维聚合物印刷粉末的节俭成像技术

Published: October 04, 2022
doi:

Summary

所提出的技术将提供一种新颖、高效、节俭和非侵入性的方法,用于对通过填充粉末床的流体流动进行成像,从而产生高空间和时间分辨率。

Abstract

分子和胶体传输(包括纳米颗粒)的新型成像技术的发展是微流体和毫流体研究中积极研究的领域。随着三维(3D)打印的出现,出现了一个新的材料领域,从而增加了对新型聚合物的需求。具体来说,平均粒径在一微米量级的聚合物粉末正受到学术界和工业界越来越多的关注。在介观到微观长度尺度上控制材料的可调性为开发创新材料(如梯度材料)创造了机会。最近,随着微米级聚合物粉末的明确应用的发展,对微米级聚合物粉末的需求一直在增长。三维打印提供了一种高通量工艺,与新应用直接相关,推动了对中尺度物理化学和运输相互作用的研究。本文讨论的协议提供了一种非侵入性技术来成像填充粉末床中的流体流动,提供高时间和空间分辨率,同时利用移动设备(如智能手机)随时可用的移动技术。通过使用通用移动设备,消除了通常与光学显微镜相关的成像成本,从而形成了节俭的科学方法。所提出的协议已成功表征了流体和粉末的各种组合,创建了一个诊断平台,用于快速成像和识别流体和粉末的最佳组合。

Introduction

基于喷墨的粘合剂喷射到粉末介质中代表了增材制造(3D打印)中的一项重要技术。粘合剂喷射过程首先使用扫描喷墨打印工艺将功能流体沉积到粉末介质中。具体来说,喷墨打印头在粉末表面上平移,将液体粘合剂沉积到粉末表面上,从而以逐层方式形成固体部件1。基于喷墨的粘结剂喷射技术通常包括沙子、金属粉末和聚合物粉末。然而,为了扩大材料在粘结剂喷射中的空间,需要一种研究流体-粉末和粉末-粉末相互作用、摩擦学、粉末堆积密度和颗粒聚集的基本方法。具体而言,对于流体-粉末相互作用,迫切需要能够实时成像流经粉末床的流体流动。这有望成为研究人员的有力工具,可以作为一种表征技术,并可能作为流体和粉末的不同组合的筛选方法234,以及更复杂的系统例如利用颗粒床方法的混凝土3D打印系统。

分子和胶体传输的新型成像技术(包括纳米颗粒)的发展是微流体和毫流体研究中一个活跃的研究领域。通过成像技术探测分子间相互作用可能具有挑战性,因为在非饱和和不稳定流体流动的条件下,很少有人做过工作来探测这些类型的相互作用。文献中报道的许多研究都集中在饱和、预润湿、多孔介质上,例如玻璃珠56789、101112 和土壤 13、14、15、161718.该技术提供了一种非侵入性方法,导致高时间和空间分辨率23419此外,所开发的技术提供了一种新方法,用于表征和量化各种多孔介质中的纳米级和微米级颗粒传输,重点是聚合物粉末。

所提出的技术利用移动设备记录通过多孔聚合物介质的不饱和,不稳定的流体传输,其颗粒尺寸代表利用流体粉末床融合技术的3D打印系统中使用的粉末。这种技术是有利的,因为流通池具有成本效益,可重复使用,体积小且易于操作,说明了节俭科学的主要方面。将这些简单的实验实施到现场研究中的能力非常简单,消除了光学显微镜所需的复杂性、成本和时间。鉴于易于创建设置、快速获得结果以及最少的样品要求,该技术是诊断筛查的最佳平台。

Protocol

1. 微流控流通池的制备 注意:对于此协议,将使用商业微流体流通池。通过使用专为光学显微镜的光穿透而设计的商业产品,有关介质明场照明的任何挑战都将降至最低。 开始制备微流体流通池,用封口膜覆盖出口以密封通道的一端,以便空流通池可以用聚合物粉末填充。在开始实验之前,确认微流体通道清洁干燥。将公制纸尺直接粘在流道下方?…

Representative Results

在分析数据部分, 图3 中延时图像的数据说明了75 wt%乙醇溶液渗入聚碳酸酯(PC)粉末。荧光素被添加到溶液中,以提高本出版物的图像质量。在延时图像中,当流体添加到入口时,时间分辨过程就开始了。一旦流体开始穿透通道,时间 t 就开始了。这一系列图像展示了液体和荧光素的进展。在PC中,液体和荧光素以相同的流速输送。 图 4 中图?…

Discussion

提供的协议高度依赖于所选颗粒的材料特性。影响流动性的材料性质包括粒度分布2,3,4,5,11,21,颗粒表面粗糙度11颗粒表面化学性质2,345,11,16<sup c…

Disclosures

The authors have nothing to disclose.

Acknowledgements

没有。

Materials

µ-Slide I Luer ibidi 80191 Microfluidic flow cell
Beaker Southern Labware BG1000-800 Glassware
CALIBRE 301-58 LT Natural Polycarbonate Resin TRINSEO LLC CALIBRETM 301-58 LT Natural polycarbonate resin
Ethanol Sigma Aldrich 1.00983 Solvent
Fume Hood Kewaunee Supreme Air LV Fume Hoods Used with 92 FPM at 18" opening
iPhone 7 plus Apple Camera
Opaque 3D printed material The CAD drawing is provided in the supplemental file
ORGASOL  2002 ES 6 NAT 3 ARKEMA A12135 Polyamide powder
Pipet VWR 10754-268 Disposable Transfer Pipet
Pipette Globe Scientific Inc. 3301-200 Pipette that can hold 125 µL of fluid
Polystyrene Advanced Laser Materials, LLC. PS200 Polystyrene for sintering
Tracker Video analysis and modeling tool
VariQuest 100 White Light Model 3-3700 FOTODYNE  3-3700 White light
Water Distilled water

References

  1. Redwood, B., Schoffer, F., Garret, B. . The 3D Printing Handbook. , (2018).
  2. . Three dimensional printing, Patent ID: 20210087418 Available from: https://uspto.report/patent/app/20210087418 (2021)
  3. . Three dimensional printing, Patent ID: 20210095152 Available from: https://uspto.report/patent/app/2021009515.2 (2021)
  4. Three dimensional printing, Patent ID: 20210107216. Available from: https://uspto.report/patent/app/20210107216#C00011 (2021)
  5. Petosa, A. R., Brennan, S. J., Rajput, F., Tufenkji, N. Transport of two metal oxide nanoparticles in saturated granular porous media: Role of water chemistry and particle coating. Water Research. 46 (4), 1273-1285 (2012).
  6. Giordano, S. Effective medium theory for dispersions of dielectric ellipsoids. Journal of Electrostatics. 58 (1-2), 59-76 (2003).
  7. Toloni, I., Lehmann, F., Ackerer, P. Modeling the effects of water velocity on TiO2 nanoparticles transport in saturated porous media. Journal of Contaminant Hydrology. 171, 42-48 (2014).
  8. Dang-Vu, T., Hupka, J. Characterization of porous materials by capillary rise method. Physicochemical Problems of Mineral Processing. 39, 47-65 (2005).
  9. Huang, W. E., Smith, C. C., Lerner, D. N., Thornton, S. F., Oram, A. Physical modelling of solute transport in porous media: evaluation of an imaging technique using UV excited fluorescent dye. Water Research. 36 (7), 1843-1853 (2002).
  10. Zhao, J., Li, H., Cheng, G., Cai, Y. On predicting the effective elastic properties of polymer nanocomposites by novel numerical implementation of asymptotic homogenization method. Composite Structures. 135, 297-305 (2016).
  11. Seymour, M. B., Chen, G., Su, C., Li, Y. Transport and retention of colloids in porous media: Does shape really matter. Environmental Science and Technology. 47 (15), 8391-8398 (2013).
  12. Ochiai, N., Kraft, E. L., Selker, J. S. Methods for colloid transport visualization in pore networks. Water Resources Research. 42 (12), (2006).
  13. Rottman, J., Sierra-Alvarez, R., Shadman, F. Real-time monitoring of nanoparticle retention in porous media. Environmental Chemistry Letters. 11 (1), 71-76 (2013).
  14. Xing, Y., Chen, X., Chen, X., Zhuang, J. Colloid-mediated transport of pharmaceutical and personal care products through porous media. Scientific Reports. 6 (1), 1-10 (2016).
  15. Dathe, A., et al. Functional models for colloid retention in porous media at the triple line. Environmental Science and Pollution Research. 21 (15), 9067-9080 (2014).
  16. Zhang, T., et al. Investigation of nanoparticle adsorption during transport in porous media. SPE Journal. 20 (4), 667-677 (2015).
  17. Zhang, Q., Karadimitriou, N. K., Hassanizadeh, S. M., Kleingeld, P. J., Imhof, A. Study of colloids transport during two-phase flow using a novel polydimethylsiloxane micro-model. Journal of Colloid and Interface Science. 401, 141-147 (2013).
  18. Health and environmental effects of particulate matter (PM). EPA Available from: https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm (2021)
  19. Bridge, J. W., Banwart, S. A., Heathwaite, A. L. Noninvasive quantitative measurement of colloid transport in mesoscale porous media using time lapse fluorescence imaging. Environmental Science & Technology. 40 (19), 5930-5936 (2006).
  20. ASTMInternational. Standard test methods for determining loose and tapped bulk densities of powders using a graduated cylinder. ASTMInternational. , (2018).
  21. Donovan, K. J. . Microfluidic investigations of capillary flow and surface phenomena in porous polymeric media for 3D printing. , (2019).
  22. . 34;Try Tracker Online." Tracker Video Analysis and Modeling Tool for Physics Education Available from: https://physlets.org/tracker/ (2022)
  23. Janssen, P. H. M., Depaifve, S., Neveu, A., Francqui, F., Dickhoff, B. H. J. Impact of powder properties on the rheological behavior of excipients. Pharmaceutics. 13 (8), 1198 (2021).
  24. Boschini, F., Delaval, V., Traina, K., Vandewalle, N., Lumay, G. Linking flowability and granulometry of lactose powders. International Journal of Pharmaceutics. 494 (1), 312-320 (2015).
  25. Yablokova, G., et al. Rheological behavior of β-Ti and NiTi powders produced by atomization for SLM production of open porous orthopedic implants. Powder Technology. 283, 199-209 (2015).
  26. Lumay, G., Fiscina, J., Ludewig, F., Vandewalle, N. Influence of cohesive forces on the macroscopic properties of granular assemblies. AIP Conference Proceedings. 1542, 995 (2013).
  27. Lumay, G., et al. Effect of relative air humidity on the flowability of lactose powders. Journal of Drug Delivery Science and Technology. 35, 207-212 (2016).

Play Video

Cite This Article
Donovan, K. J., Stasiak, J., Özbek, Ş., Rochefort, W. E., Walker, T. W. Frugal Imaging Technique of Capillary Flow Through Three-Dimensional Polymeric Printing Powders. J. Vis. Exp. (188), e63494, doi:10.3791/63494 (2022).

View Video