The present protocol describes particle image velocimetry (PIV) measurements performed to investigate the sinus flow through the in vitro setup of the transcatheter aortic valve (TAV). The hemodynamic parameters based on velocity are also determined.
Aortic valve dysfunction and stroke have recently been reported in transcatheter aortic valve implantation (TAVI) patients. Thrombus in the aortic sinus and neo-sinus due to hemodynamic changes has been suspected. In vitro experiments help investigate the hemodynamic characteristics in the cases where an in vivo assessment proves to be limited. In vitro experiments are also more robust, and the variable parameters are controlled readily. Particle image velocimetry (PIV) is a popular velocimetry method for in vitro studies. It provides a high-resolution velocity field such that even small-scale flow features are observed. The purpose of this study is to show how PIV is used to investigate the flow field in the aortic sinus after TAVI. The in vitro setup of the aortic phantom, TAVI for PIV, and the data acquisition process and post-processing flow analysis are described. The hemodynamic parameters are derived, including the velocity, flow stasis, vortex, vorticity, and particle residence. The results confirm that in vitro experiments and PIV help investigate the hemodynamic features in the aortic sinus.
Aortic stenosis is a common disease in older adults, and it is when the aortic valve doesn't open, reducing blood flow. The problem is caused by the thickening or calcification of the aortic valve1. Therefore, it is a necessary treatment to enhance the blood flow and decrease the load on the heart. It is treated by remodeling the aortic valve or replacing it with an artificial valve. This study focuses on transcatheter aortic valve implantation (TAVI), replacing the malfunctioning aortic valve with an artificial one using a catheter.
TAVI has been recommended for patients challenged in surgery, and the mortality has also been low2. Recently, it has been reported that thrombus in patients after TAVI caused valve dysfunction and stroke3,4. Thrombus in the aortic sinus and neo-sinus is suspected, with its cause probably being the changes in the hemodynamics caused by TAVI. It is performed without removing the native leaflets; these leaflets can disturb the sinus flow and elevate the risk of thrombosis5.
It is difficult to determine how blood flow is affected by TAVI and how thrombosis is induced in patients. It is desirable to elucidate the relationship between blood flow and thrombus formation in vivo. However, a lack of practical techniques for measuring blood flow makes this problematic. On the other hand, in vitro techniques have the advantage of allowing one to monitor the changes in the blood flow by limiting the parameters that must be investigated. In vitro setup and particle image velocimetry (PIV) have been used to identify velocity in medical fields6,7,8. Therefore, in vitro and PIV are sufficient for determining the parameters to be reported by mimicking the patient's condition: the heart rate and pressure, viscosity, and sinus geometry, and allowing one to control these parameters.
In this study, in vitro setup and PIV are used to investigate the flow in the aortic sinus after TAVI. The aortic phantom and TAVI for the PIV and the data acquisition process and post-processing flow analysis are described in this protocol. Various hemodynamic parameters are derived, including the velocity, stasis, vortex, vorticity, and particle residence. The results demonstrate that in vitro setup and PIV help investigate the hemodynamic features in the aortic sinus.
1. In vitro setup
2. PIV setup
3. Investigation of hemodynamics
4. Data processing
5. Data analysis
The velocity fields showed a different sinus flow structure depending on the valve diameter in Figure 4. For TAV (23 mm), the velocity was higher than 0.05 m/s between TAV and STJ from early systole to peak systole that TAV was opened using the forwarding jet. High velocity was then distributed in a narrow range near the stent at late systole. The velocity at diastole was lower than 0.025 m/s, and two vortexes with low velocity appeared. For TAV (26 mm), when the valve opened, high velocity was measured at STJ. In time except for early systole, velocity distribution in sinus was lower than 0.05 m/s. Specifically, the velocity at late systole was lower than at another time. The one-direction vortex, which had an oval shape, is observed above the native leaflet at diastole.
The hemodynamics parameters derived by velocity are shown in Figure 5 and Table 2. The peak velocity in TAV (23 mm) was higher than TAV (26 mm). Stasis was observed in the sinus except for the forwarding jet and becoming into the sinus. The stasis area formed in TAV (23 mm) was broad, but the fraction of stasis was low. The vortex and vorticity at diastole presented something not confirmed in the velocity field. For TAV (23 mm), two similar vortices were noticed above and below the native leaflet. But for TAV (26 mm), the clockwise vortex was not clear; the counterclockwise vortex had an elliptical shape. The vorticity showed that was similar results to the vortex. The positive was near the stent and native leaflet, and the negative was observed in another region.
The percentage and snapshot of particle residence are shown in Figure 6. The snapshots of particle residence showed particle distribution in the sinus region for 2 s, and the percentage of particle residence showed that fraction of remaining particles in the sinus region for 14 s. In Figure 6B, the TAV (26 mm) decreased faster than TAV (23 mm), but both cases were presented that all particles left the sinus region within 6 s. The particles moved out of the region in Figure 6A, but it was not identical in cases. For TAV (23 mm), particles were distributed in the entire sinus region and went out of the plane as the cycle progressed. This did not happen for TAV (26 mm) and showed different aspects. The particles were concentrated near the annulus, which left the sinus region from the bottom of the native leaflet.
Figure 1: In vitro experimental setup. It consists of a high-speed camera, an acrylic sinus model, a piston pump system, a reservoir, an Arduino, and a computer. It is a closed system and flows only in one direction due to the check valve installed in the reservoir and TAV installed in the acrylic sinus model. Please click here to view a larger version of this figure.
Figure 2: The acrylic sinus model with native leaflet and TAV (23mm). (A) The drawing and naming of the dimensions are listed in Table 1. For both artificial valves, the acrylic sinus model is the same. (B) Modeling about native leaflet and stent of TAV (23 mm). The native leaflet is cylindrical in shape and is not transparent. In modeling, the leaflet of TAV was omitted and only presented stent. TAV; Transcatheter aortic valve, STJ; sinotubular junction. Please click here to view a larger version of this figure.
Figure 3: Flow rate and pressure for 1 s. (A) Flow rate is derived by stroke volume for 1 s; maximum flow rate is 20 L/min. The red dot in flow rate is instance time from the left at the early systole, peak systole, late systole, and diastole, respectively. (B) The pressure of TAV (23 mm). (C) The pressure of TAV (26 mm). The blue line is post-valvular pressure, and the red is pre-valvular pressure. Please click here to view a larger version of this figure.
Figure 4: Velocity field in the sinus region. Velocity contour is ranged from 0-0.05 m/s. The left row is the velocity field of TAV (23 mm), and the right row is that of TAV (26 mm). The column is instance time defined at a flow rate. Please click here to view a larger version of this figure.
Figure 5: Sinus hemodynamics result. The peak velocity contour is presented at peak systole. Flow stasis is projected for the cycle, and it is that internal region shown by a white line. The vortex and vorticity are represented as velocity vector and contour at diastole. Please click here to view a larger version of this figure.
Figure 6: Snapshots and percentage of particle residence. (A) particle residence for 2 s is presented with a white patch indicated sinus region and red circle indicated virtual particles. (B) The percentage of particle residence for 14 s is that the red line is TAV (23 mm), and the blue line is TAV (26 mm). Please click here to view a larger version of this figure.
Peak velocity (m/s) | Vorticity (s-1) | Vortex | Stasis | Decay | |
TAV (23 mm) | 1.74 ± 0.03 | 10.13 ± 1.76 | 0.58 ± 0.08 | 0.44 ± 0.13 | -0.95 ± 0.21 |
TAV (26 mm) | 1.43 ± 0.03 | 7.42 ± 1.16 | 0.33 ± 0.10 | 0.50 ± 0.09 | -1.35 ± 0.28 |
Table 1: Dimensions of acrylic sinus model. All units are in mm.
Unit (mm) | |||||
TAV Diameter | TAV Height | Deployment Depth | Native leaflet Length | Native leaflet Diameter | |
TAV (23 mm) | 23 | 18 | 1.8 | 9 | 26 |
TAV (26 mm) | 26 | 20 | 2 | 10 | 29 |
Unit (mm) | |||||
STJ Diameter | STJ Height | Annulus Diameter | Sinus Diameter | Sinus Height | |
TAV (23 mm) | 27 | 25.5 | 30 | 40 | 7.65 |
TAV (26 mm) |
Table 2: Average and standard deviation about sinus hemodynamics parameter.
Supplementary File 1: Equations for data analysis. Please click here to download this File.
The sinus flow changed due to different sinus geometry after TAVI. The vortex was formed by the aortic valve opening and the interaction with the forward jet of systole22. In the study of the artificial surgical valve without native leaflets, vortex observed in the sinus region at systole was normal23. This study forms the vortex presented at diastole by reducing the forward jet and coming into the sinus. The sinus flow encountered the native leaflet; as a result, it splits clockwise below the native leaflet and counterclockwise above. It suggests that patients after TAVI are different compared to healthy without thrombosis. So, the sinus flow changed after TAVI, possibly affecting thrombus formation in the sinus.
Thrombosis occurs because red blood cells are destroyed by shear stress, the stagnation flow, and external substances such as the stent of TAV24. In this study, thrombus formed by stagnation flow was considered, which was confirmed by hemodynamics parameters such as flow stasis and particle residence. The native leaflet physically prohibits the sinus flow and limits the sinus region. The sinus flow near the annulus becomes more restricted, increasing stasis. And for the particle residence, particles above the native leaflet quickly exit the region, whereas those below do not. The red blood cell has a small distance, aggregating in the sinus. It was also studied that flow stasis is observed at the bottom of the sinus when there is a native leaflet4. The problem after TAVI is that native leaflet remains, and research is needed to revise so as to inhibit thrombosis.
In vitro experiments and PIV successfully observe the velocity field in the sinus. However, there are still differences from actual patients, and it requires improvement. Firstly, the acrylic sinus model is simplified to allow fabrication at once. The right and left coronary are located on two of the three cusps; the blood goes to the coronary artery ~5% of the total during diastole10,25. One of the limitations of the present in vitro model is that the current model does not mimic physiological properties such as rheology, vascular structure, 3D vessel geometry, etc. Also, the current model does not include coronary flow. The previous studies demonstrated that coronary flow affects sinus flow. Secondly, the current 2D PIV analysis does not include the out-of-plane motion of the flow. Further study with volumetric measurement (e.g., 3D PIV/Particle tracking velocimetry (PTV)) can reveal the complex flow field in the aortic flow. Thirdly, PIV’s accuracy limitations due to individual variations of particle image intensities exist. The out-of-plane motion, even without noise, limits the achievable accuracy26,27. In this study, the accuracy of PIV measurement with subpixel interpolation is ~0.1 pixel, which corresponds to 0.03 m/s at TAV (23 mm) and 0.041 m/s at TAV (26 mm).
Future studies plan to use in vitro experiments and 3D fluid visualization methods to understand sinus hemodynamics. The acrylic sinus model is designed to have a tricuspid with a coronary artery. It will be split by avoiding interference in the sinus region. In this study, the measured area after STJ was also analyzed to confirm whether the velocity field is similar. Although not explained, it is hypothesized that sinus flow affects the leaflet motion of TAV. It is not protruding as a result. The measured area will focus only on the sinus to minimize problems such as blurred particle images by refracted laser. Also, 3D PTV is being prepared to observe the motion of the particle26,27. It will be helpful to understand the principle of thrombosis in the sinus after TAVI.
The authors have nothing to disclose.
This research was supported by the Basic Science Research Program of the National Research Foundation of Korea, which is funded by the Ministry of Education (NRF-2021R1I1A3040346 and NRF-2020R1A4A1019475). This study was also supported by 2018 Research Grant (PoINT) from Kangwon National University.
3D Printer | Prusa Research | Original Prusa i3 MK2; FDM printer | |
Aluminum bar (square) | APSPRO | KHP-3030, KHP-6060 | Dimension: 30 mm x 30 mm, 60 mm x 60 mm |
Bulb pump | Skyhope | MHL-1 | |
Camera controlling software | Phantom | PCC 3.4 software | The software controll the high speed camera |
Check valve | HANJU STEEL PIPE | Check valve; 1/2 inch (15A) | |
Digital Aqusition device | National Instruments | USB-6001 | |
Glycerin | ANU Korea | It used for making a working fluid | |
High-speed camera | Phantom | Phantom VEO 710E-L | |
Laser | Changchun New Industries Optoelectronics Technology | MGL-W-532; CW Nd:YAG Laser | |
Linear actuator | THOMSON | PC-40; it converts the rotational motion to lenear motion | |
Macro lens | Nikon | VR Micro-NIKKOR 105mm, f/1.4 | |
Motor | KOLLMORGEN | AKM33H-ANCNR-00; DC servo motor | |
Motor controlling software | KOLLMORGEN | Kollmorgen software; the software controll the motor driver | |
Motor driver | KOLLMORGEN | AKD-B00606-NBAN-0000 | |
Open-source electronic prototypic platform | Arduino | A000066 | Arduino Uno R3. It used for making a external trigger |
Optic table | SMTECH | 1800 (W) x 900 (B) x 800 (H) | |
Particle | Dantec Dynamics | 80A6011 | Hollow Glass Sphere. Mean diameter:10 µm, Density: 1090 kg/m3 |
PIVlab | PIVlab | Open source algorithm based on MATLAB https://kr.mathworks.com/matlabcentral/fileexchange/27659-pivlab-particle-image-velocimetry-piv-tool-with-gui |
|
Pressure gauge | OMEGA | PX309-015A5V. Measurement range: 0~15psi | |
Refractometer | ATAGO | 2350 | R-5000. Hand held refractometer; measurement range: 1.333-1.520 |
Resistance valve | HANJU STEEL PIPE | Ball valve; 1/2 inch (15A) | |
Saline | DAI HAN PHARM | It is used for making a working fluid and for preserving the TAV | |
Silicone hose | HSW | Inner diameter 26mm, Outter diameter 30mm; Inlet length 5m, Outlet length 1.5m | |
System enginnering software | National Instruments | LabVIEW software. The software controlls the DAQ. | |
Transcatheter Aortic Valve, TAV (23 mm) and TAV (26 mm) | Edwards Lifesciences | SAPIEN3 23mm, SAPIEN3 26mm. It is supported by Seoul Asan Medical | |
Viscosmeter | Brookfiled | DVELV; Measurement range: 1-2×109 cp |