酸素消費率(OCR)は、ミトコンドリア機能の一般的なプロキシであり、さまざまな疾患モデルを研究するために使用することができます。我々は、シーホースXF分析装置を用いて、成体マウスの急性線条体切片のOCRを直接測定する新しい方法を開発した。
ミトコンドリアは、細胞のATP産生、活性酸素種の調節、およびCa2+ 濃度制御において重要な役割を果たしている。ミトコンドリア機能障害は、パーキンソン病(PD)、ハンチントン病、アルツハイマー病を含む複数の神経変性疾患の病因に関与している。これらの疾患のモデルにおけるミトコンドリアの役割を研究するために、我々はミトコンドリア機能の代理として酸素消費速度(OCR)を介してミトコンドリア呼吸を測定することができる。OCRは、細胞培養物および単離されたミトコンドリアにおいて、すでに首尾よく測定されている。しかし、これらの技術は、急性脳スライスでOCRを測定するよりも生理学的に関連性が低い。この制限を克服するために、著者らは、成体マウスの急性線条体スライスのOCRを直接測定するために、タツノオトシゴXF分析装置を使用する新しい方法を開発した。この技術は、PDおよびハンチントン病に関与する脳領域である線条体に焦点を当てて最適化されています。分析器は、24ウェルプレートを使用して生細胞アッセイを行い、24サンプルの同時速度論的測定を可能にします。この方法は、サンプルとして線条体脳スライスの円形パンチ片を使用する。我々は、PDのマウスモデルの線条体スライスにおいてより低い基底OCRを同定することによって、この技術の有効性を実証する。この方法は、PDおよびハンチントン病の分野で働く研究者にとって幅広い関心事となるでしょう。
ミトコンドリア機能障害は、パーキンソン病(PD)、ハンチントン病、およびアルツハイマー病を含むいくつかの神経学的疾患に関与している1,2,3。PINK1ノックアウト(KO)マウスおよびラットなどのPDモデルは、ミトコンドリア機能障害4、5、6、7、8、9、10、11を示す。老化PINK1 KOマウスの線条体(STR)または全脳から単離されたミトコンドリアは、複合体I7、10、12、13において欠損を示す。酸素消費速度(OCR)を直接測定することは、OCRがミトコンドリア14の主要な機能であるATP産生と結合しているため、ミトコンドリア機能を評価する最も一般的な方法の1つです。したがって、疾患モデルまたは患者由来のサンプル/組織でOCRを測定することは、ミトコンドリア機能障害が疾患にどのようにつながるかを調査するのに役立ちます。
現在、ミトコンドリアOCRを測定するには、クラーク電極および他のO2電極、O2蛍光色素、および細胞外フラックス分析装置15、16、17、18、19を含むいくつかの方法がある。利点として、O2電極ベースの方法は、様々な基板を容易に添加することを可能にする。しかし、複数のサンプルを同時に測定するには不十分です。従来のO2電極ベースの方法と比較して、細胞培養物または精製ミトコンドリアにおけるOCRに一般的に使用されるツールである細胞外フラックスアナライザーは、改善されたスループット15,18,20を提供する。それにもかかわらず、これらの方法はすべて、通常、単離されたミトコンドリアまたは細胞培養物6、16、17、19、20、21におけるOCRを測定するために適用される。ミトコンドリアの単離は不注意による損傷を引き起こし、抽出されたミトコンドリアまたは細胞培養物は、無傷の脳スライス22よりも生理学的関連性が低い。微小電極がスライスに使用される場合でも、それらは培養細胞23よりも感度が低く、操作がより困難である。
これらの課題に対応するために、我々は、マウス24の急性線条体脳切片からの複数の代謝パラメータの分析を可能にするXF24細胞外フラックスアナライザーを使用する方法を開発しました24。この技術は、OCRを介したミトコンドリア呼吸の連続的な直接定量化を提供する。要するに、線条体脳スライスの小さな切片が膵島プレートのウェルに入れられ、分析器は酸素およびプロトン蛍光ベースのバイオセンサーを使用してOCRおよび細胞外酸性化速度を測定する17、21、25。
分析装置のユニークな特徴の1つは、最大4つの化合物または試薬を順次注入しながらOCRの継続的な測定を可能にする4つの注入ウェルです。これにより、基底ミトコンドリアOCR、ATP結合OCR、最大ミトコンドリアOCRなどのいくつかの細胞呼吸パラメータの測定が可能になります。ここに示したプロトコールの測定中に注入された化合物は、第1溶液ウェル(ポートA)における10mMピルビン酸、第2溶液ウェル(ポートB)における20μMオリゴマイシン、第3ウェル(ポートC)における10μMカルボニルシアン化4-(トリフルオロメトキシ)フェニルヒドラゾン(FCCP)、および第4ウェル(ポートD)における20μMアンチマイシンAの作業濃度であり、 Fried et al.25に基づく。これらの濃度は作業濃度であり、10x、11x、12x、および13xのストック溶液がそれぞれ溶液ポートA〜Dに注入されたことに留意しなければならない。各溶液を使用する目的は以下の通りであった:1)ピルビン酸は、それがなければ、FCCPの添加は、利用可能な基質の制限によって引き起こされるOCR応答を低下させるので、必要であった。2)オリゴマイシンはATP合成酵素を阻害し、ATP結合呼吸の測定を可能にする。3)FCCPはリン酸化から酸化を結合解除し、最大ミトコンドリア容量の測定を可能にする。4)アンチマイシンAは、電子輸送鎖中の複合体IIIを阻害し、したがって、ミトコンドリアに連結されていないOCRの測定を可能にする。
使用したオリゴマイシンの濃度は、以下の理由に基づいて決定した:1)ほとんどの細胞型(単離されたミトコンドリアまたは細胞培養物)に対するオリゴマイシンの推奨用量は1.5μMである。経験から、通常、勾配がある可能性があるため、解離した細胞用量の3x〜10xがスライス実験に使用され、スライス内の溶液の浸透には時間がかかる。したがって、濃度は5 μM〜25 μMの範囲であるべきである2)Fried et al.25に基づいて20 μM濃度が選択された。より高い濃度は、オリゴマイシンの非特異的毒性のために試みられなかった。3) Underwood et al.26による報告において、著者らはオリゴマイシンの滴定実験を行い、6.25、12.5、25、および50μg/mLの用量が同様の抑制をもたらすことを見出した。高濃度のオリゴマイシン(50 μg/mL)はそれ以上阻害しなかったが、より大きな分散を有していた。4)我々の観察では、決定因子はオリゴマイシンの浸透能力であると思われる。オリゴマイシンが組織に浸透することは困難であり、それがプラトーに達するのに少なくとも7〜8サイクルかかる理由であり、最大の応答である。プラトーに達する限り、阻害は最大であると仮定される。
線条体スライスのOCRを測定するために細胞外フラックス分析装置を適応させる重要な技術的課題は、組織低酸素症を予防することです。バッファーは測定の全期間(約4時間)の間酸素化されなかったため、低酸素症が中心的な問題でした。これは、酸素がサンプル全体に拡散できない、より厚い組織サンプルに特に当てはまります。この問題を克服するために、周囲酸素が脳スライスの中央に浸透できるように、スライスを150μmの厚さで切片化した。さらに、4mg/mLのウシ血清アルブミン(BSA)を予め酸素化した人工脳脊髄液(ACSF)緩衝液に添加し、以前に示唆されたように、最大OCRの決定を容易にした23。細胞が生きているかどうかを調べた。まず、ヘキスト33258(10 μM)およびヨウ化プロピジウム(10 μM)を使用して、これらの条件下で細胞が健康であるかどうかを調べました。次に、中程度の棘状ニューロンが機能的に健康であるかどうかをパッチクランプ記録を用いて調べた。我々はさらに、線条体スライス中のドーパミン(DA)末端が機能的に健全であるかどうかを、高速スキャンボルタンメトリーを用いてDA放出を測定することによって評価した。結果は、酸素化されていない線条体スライス(ACSF/BSA群)が酸素化対照群24と同じくらい健康であることを示した。
次に、スライスの厚さとパンチサイズのさまざまな組み合わせをテストして、フラックス呼吸アッセイに最適な線条体スライス条件を決定しました。厚さ(150 μmおよび200 μm)およびパンチサイズ(直径1.0 mm、1.5 mm、および2.0 mm)の背側線条体スライスを、分析装置を使用したOCR分析に使用した。厚さ150μm、パンチサイズ1.5mmの線条体スライスは、結合効率が最も高く、OCRは分析器24にとって最適な範囲内にあった。
私たちが開発した方法では、XFアナライザーを使用して、成体マウスの線条体スライスのOCRを4時間の期間にわたって測定することができました。この方法は、解剖学的に定義された脳構造から切り取られたパンチにおける細胞生体エネルギーを測定する新しい方法を提供する。分析される組織サンプルはかなり小さいので、疾患に関与する特定の脳領域の代謝パラメータを調査することがで?…
The authors have nothing to disclose.
Wangchen TseringとPamela Walter が、この原稿を批判的に読み、編集してくれたことに感謝します。この研究は、National Institute of Neurological Disorders and Stroke (NINDS) (NS054773 to C.J. L. および NS098393 to H.Z.) と Thomas Jefferson University の Department of Neuroscience (Startup Funds to H.Z.) の支援を受けた。
Accumet AB150 pH benchtop meter | Thermo Fisher Scientific | 13-636-AB150 | To measure pH |
Antimycin A from streptomyces sp. | SIGMA | A8674 | To inhibit complex III of the mitochondria |
Bovine Serum Albumin (BSA) | SIGMA | A6003 | To make modified artificial cerebrospinal fluid (BSA-ACSF) |
Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) | SIGMA | C2920 | To uncouple mitochondrial respiration |
D-Glucose | SIGMA | G8270 | To make artificial cerebrospinal fluid (ACSF) |
DMSO | SIGMA | D8418 | To dissovle compounds |
HEPES | SIGMA | H3375 | To make artificial cerebrospinal fluid (ACSF) |
Humidified non-CO2 incubator | Fisher Scientific | 11-683-230D | To hydrate plates at 37 °C |
Oligomycin from Streptomyces diastatochromogenes | SIGMA | O4876 | To inhibit mitochondrial ATP synthase |
Parafilm | SIGMA-ALDRICH | sealing film | |
Rotenone | Tocris | 3616 | To inhibit complex I of the mitochondria |
Seahorse XF Calibrant Solution 500 mL | Seahorse Bioscience | 103681-100 | Solution for seahorse calibration |
Seahorse XF Extracellular Flux Analyzer | Seahorse Bioscience | Equipment used to analyze oxygen consumption rate, old generation | |
Seahorse XFe24 Extracellular Flux Analyzer | Seahorse Bioscience | Equipment used to analyze oxygen consumption rate, new generation | |
Seahorse XF24 FluxPaks | Seahorse Bioscience | 101174-100 | Package of flux analyzer sensor cartridges, tissue culture plates, capture screens, calibrant solution and calibration plates; assay kit. |
Sodium pyruvate | SIGMA | P2256 | To prevent any substrate-limiting constraints of substrate supply |
Stainless steel biopsy punches | Miltex | Device used to punch slices | |
Sterile cell culture dish, 35 x 10 mm | Eppendrof | 0030700102 | Used for slice punch |
Vibratome | Leica | VT1200 | To slice brain tissue |
Water bath | Thermo Scientific Precision | 282-115 | To heat buffer and solutions |