Protokol, kesilmiş sinirden fare motor sinir terminallerine floresan kalsiyum boyası yükleme yöntemini açıklar. Ek olarak, konfokal mikroskopi kullanarak periferik sinir uçlarındaki hızlı kalsiyum geçicilerini kaydetmek için benzersiz bir yöntem sunulmuştur.
Presinaptik kalsiyum seviyesinin tahmini, sinaptik iletimin incelenmesinde kilit bir görevdir, çünkü presinaptik hücreye kalsiyum girişi, nörotransmitter salınımına yol açan bir dizi olayı tetikler. Ayrıca, presinaptik kalsiyum seviyelerindeki değişiklikler birçok hücre içi proteinin aktivitesine aracılık eder ve sinaptik plastisitede önemli bir rol oynar. Kalsiyum sinyallemesini incelemek, nörodejeneratif hastalıkları tedavi etmenin yollarını bulmak için de önemlidir. Nöromüsküler kavşak, sadece bir tür nörotransmittere sahip olduğu için sinaptik plastisiteyi incelemek için uygun bir modeldir. Bu makalede, kalsiyuma duyarlı bir boyanın kesilmiş sinir demeti boyunca farelerin motor sinir uçlarına yüklenme yöntemi açıklanmaktadır. Bu yöntem, bazal kalsiyum seviyesi ve kalsiyum geçici gibi hücre içi kalsiyum değişiklikleriyle ilgili tüm parametrelerin tahmin edilmesini sağlar. Kalsiyumun hücre dışından sinir terminallerine akışı ve kalsiyuma duyarlı boyaya bağlanması/çözülmesi birkaç milisaniye aralığında gerçekleştiğinden bu olayları kaydetmek için hızlı bir görüntüleme sistemi gereklidir. Gerçekten de, yüksek hızlı kameralar hızlı kalsiyum değişimlerinin kaydedilmesi için yaygın olarak kullanılır, ancak düşük görüntü çözünürlüğü parametrelerine sahiptirler. Burada kalsiyum geçici kaydı için sunulan protokol, konfokal mikroskopi tarafından sağlanan son derece iyi mekansal-zamansal çözünürlüğe izin verir.
Uyarılabilir hücrelerde hızlı kalsiyum dalgalarını ölçme problemi, merkezi ve periferik sinir sistemlerinde sinyal iletimini incelemenin en önemli ve zorlu yönlerinden biridir. Kalsiyum iyonları, nörotransmitter salınımını, sinaptik plastisiteyi ve çeşitli hücre içi proteinlerin aktivitesinin modülasyonunu tetiklemede önemli bir rol oynar 1,2,3,4,5. Kalsiyum sinyallemesini incelemek, nörodejeneratif hastalıkları tedavi etmenin yollarını bulmak için de önemlidir6. Kalsiyum seviyelerindeki değişiklikleri ölçmek için, floresan kalsiyuma duyarlı boyalar yaygın olarak kullanılır ve floresan seviyelerindeki değişiklikler analiz edilir 7,8,9.
Kalsiyum boyalarının hücrelere yüklenmesi farklı şekillerde sağlanabilir. Ağırlıklı olarak, hücre perkastan boyalar10,11 oranında kullanılır. Bununla birlikte, böyle bir durumda, sadece hücre içindeki bir boya konsantrasyonunu kontrol etmek zor değildir, aynı zamanda yükleme için hedef hücreleri seçmek de zordur. Bu yöntem, boya postsinaptik hücrelere girdiğinden periferik sinir uçlarını incelemek için geçerli değildir. Bunun yerine, hücre geçirimsiz boyalar bu tür preparatlar için daha uygundur. Bu durumda, boyalar hücrelere mikroenjeksiyonla veya bir yama pipeti 12,13,14 yoluyla verilir. Bir sinir kütüğünden yükleme yöntemi de vardır. İkinci yöntem, nöromüsküler bileşke preparatları15,16,17,18,19,20 için en uygun yöntemdir. Sadece ilgilenilen hücreler için boyama yapılmasına izin verir. Bu yöntem, hedef hücredeki boya konsantrasyonunun doğru bir değerlendirmesini sağlamasa da, konsantrasyon, çözeltilerde duran hücrelerin floresan seviyesini, bilinen bir kalsiyum21 konsantrasyonu ile karşılaştırarak yaklaşık olarak tahmin edilebilir. Bu çalışmada, memelilerin sinapslarına uygulanan bu yöntemin bir modifikasyonu sunulmuştur.
Aksiyon potansiyelinin depolarize fazı sırasında kalsiyum girişi, özellikle nöromüsküler kavşakta hızlı bir süreçtir; bu nedenle, tescili için uygun ekipman gereklidir1. Voltaja duyarlı bir floresan boya kullanan yeni bir çalışma, bir farenin periferik sinapsındaki aksiyon potansiyelinin süresinin yaklaşık 300 μs22 olduğunu göstermiştir. Kurbağanın periferik sinapslarında kalsiyuma duyarlı boyalar kullanılarak değerlendirilen kalsiyum geçici, daha uzun bir süreye sahiptir: yükselme süresi yaklaşık 2-6 ms ve çürüme süresi, kullanılan kalsiyum boyasına bağlı olarak yaklaşık 30-90 ms’dir. Floresan boyaların yardımıyla hızlı süreçleri ölçmek için, genellikle hızlı ve hassas CCD matrislerine sahip CCD veya CMOS kameralar kullanılır. Bununla birlikte, bu kameralar,matris 25,26,27,28’in hassas elemanlarının boyutuyla sınırlı olan düşük çözünürlük dezavantajına sahiptir. Hücrelerin düşük frekanslı uyarılmasına yanıt olarak hem aksiyon potansiyellerini hem de kalsiyum geçicilerini kaydetmek için yeterli hassasiyete sahip en hızlı kameralar, 2.000 Hz’lik bir tarama frekansına ve 80 x 8029 boyutunda bir matrise sahiptir. Daha yüksek uzamsal çözünürlüğe sahip sinyaller elde etmek için, özellikle30,31,32 sinyalindeki bazı hacimsel değişiklikleri değerlendirmek gerekirse, konfokal mikroskopi kullanılır. Ancak, konfokal mikroskobun çizgi tarama modunda yüksek bir tarama hızına sahip olduğu akılda tutulmalıdır, ancak uzamsal bir görüntü oluştururken hızlı işlemlerin kayıt hızında hala önemli sınırlamalar vardır33. Daha yüksek tarama hızına sahip dönen Nipkow disklerine (yarık tarama mikroskobu) ve Çok Noktalı Dizi Tarayıcılara dayanan konfokal mikroskoplar vardır. Aynı zamanda, konfokal görüntü filtrelemede klasik konfokal mikroskoplardan daha düşüktürler (Nipkow diskli mikroskoplar için iğne delikleri çapraz konuşma)32,34,35. Rezonans taramalı konfokal görüntüleme aynı zamanda yüksek zamansal ölçümler için gereken yüksek uzaysal-zamansal çözünürlük sağlayabilir36. Bununla birlikte, rezonans tarayıcıları kullanırken zayıf floresan tepkilerinin yüksek bir tarama hızında kaydedilmesinin, hibrit dedektörler gibi son derece hassas dedektörler gerektirdiğini dikkate alın36.
Bu makalede, uzamsal çözünürlük37’yi korurken Lazer Tarama Konfokal Mikroskopisi (LSCM) ile kaydedilen sinyallerin zamansal çözünürlüğünü artırmak için bir yöntem sunulmaktadır. Mevcut yöntem, daha önce açıklanan ve LSCM platformu 38,39,40’a aktarılan yöntemlerin daha da geliştirilmesidir. Bu yaklaşım, mikroskop donanımında değişiklik gerektirmez ve periyodik olarak uyarılan floresan sinyalleri, stimülasyon anına göre bir zaman kayması ile kaydetmek için bir algoritmanın uygulanmasına dayanır.
Bu makalede, Ca 2 + ‘ya duyarlı boyanın sinir kütüğü yoluyla fare sinir uçlarına yüklenmesi ve konfokal mikroskop kullanılarak hızlı bir kalsiyum geçicisinin kaydedilmesi yöntemi sunulmuştur. Bu yükleme yönteminin uygulanmasının bir sonucu olarak, sinir kütüğüne yakın bulunan sinapsların çoğu, motor sinirin düşük frekanslı uyarımına yanıt olarak kalsiyumun sinir uçlarına girişinin kaydedilmesini sağlamak için yeterli bir floresan seviyesine sahipti.
<p class="jove_con…The authors have nothing to disclose.
Bu çalışmanın floresan çalışmaları, Rusya Bilim Vakfı Hibe (proje No. 19-15-00329) finansal desteği ile gerçekleştirilmiştir. Yöntem, RAS АААА-А18-118022790083-9 FRC Kazan Bilim Merkezi için hükümet görevlendirmesinden sağlanan finansman altında geliştirilmiştir. Araştırma, Federal Araştırma Merkezi “RAS Kazan Bilim Merkezi” ekipmanlarının kullanılmasıyla geliştirilmiştir. Yazarlar, bu makaleyi eleştirel bir şekilde okuduğu için Dr. Victor I. İlyin’e teşekkür eder.
Capillary Glass | Clark Electromedical instruments, UK | GC150-10 | |
Confocal and multiphoton microscope system Leica TCS SP5 MP | Leica Microsystems , Heidelberg, Germany | ||
Flaming/Brown Micropipette Puller P 97 | Sutter Instrument, USA | P-97 | |
Flow regulator | KD Medical GmbH Hospital Products, Germany | KD REG | Disposable infusion set with Flow regulator |
HEPES | Sigma-Aldrich, USA | H0887 | 100mL |
Illumination system Leica CLS 150X | Leica Microsystems, Germany | ||
ImageJ | National Institutes of Health, USA | http://rsb.info.nih.gov/ij/download.html | |
Las AF software | Leica Microsystems, Heidelberg, Germany | ||
Las X software | Leica Microsystems, Heidelberg, Germany | https://www.leica-microsystems.com/products/microscope-software/p/leica-las-x-ls/ | |
Magnetic Holder with Suction Tubing | BIOSCIENCE TOOLS, USA | MTH-S | |
Microspin FV 2400 | Biosan, Latvia | BS-010201-AAA | |
Minutien Pins | Fine science tools, Canada | 26002-20 | |
Multi-spin MSC 3000 | Biosan, Latvia | BS-010205-AAN | |
Oregon Green 488 BAPTA-1 pentapotassium salt | Molecular Probes, USA | O6806 | 500 μg |
Pipette | Biohit, Russia | 720210 | 0.5-10 µL |
Pipette tip | Biohit, Russia | 781349 | 10 µL |
Plasticine | local producer | ||
Single-use hypodermic needles | Bbraun | 100 Sterican | 0.4×40 mm |
Spreadsheet program | Microsoft, USA | Microsoft Office Excel | |
Stereomicroscope, Leica M80 | Leica Microsystems , Germany | ||
Suction electrode | Kazakov A. SIMPLE SUCTION ELECTRODE FOR ELECTRIC STIMULATION OF BIOLOGICAL OBJECTS / A. Kazakov, M. Alexandrov, N. V. Zhilyakov et al. // International research journal. - 2015. – No. 9 (40) Part 3. – P. 13-16. | http://research-journal.org/biology/prostoj-vsasyvayushhij-elektrod-dlya-elektricheskoj-stimulyacii-biologicheskix-obektov/ | |
Sylgard 184 elastomer | Dow Corning, USA | ||
Syringe | local producer | 0.5 mL | |
Syringe | local producer | 60 mL |