Summary

使用光遗传学逆转大鼠的神经可塑性并抑制可卡因的寻找

Published: October 05, 2021
doi:

Summary

这里描述的方法概述了用于在大鼠行为相关回路中以光遗传学逆转可卡因诱导的可塑性的程序。丘脑-杏仁核突触的持续低频光刺激可诱发长期抑郁(LTD)。在经历可卡因的大鼠中 体内光遗传 诱导的LTD导致随后的线索动机药物寻求减弱。

Abstract

该协议展示了使用光遗传学工具在丘脑 – 杏仁核回路中逆转可卡因诱导的可塑性以减少随后在大鼠中寻找可卡因行为所需的步骤。在我们的研究中,我们发现,当大鼠自我静脉注射可卡因与视听线索配对时,随着线索 – 可卡因关联的学习,丘脑内侧膝状核(MGN)输入到侧杏仁核(LA)主要神经元处形成的突触变得更强。我们假设在这些突触上逆转可卡因诱导的可塑性将减少线索动机的可卡因寻求行为。为了在 体内完成这种类型的神经调控,我们想诱导突触长期抑制(LTD),这会降低MGN-LA突触的强度。为此,我们使用了光遗传学,它允许使用光神经调控大脑回路。通过将含有oChiEF的AAV注入MGN在LA的突触前MGN末端表达兴奋性视蛋白oChiEF。然后将光纤植入LA,并以1 Hz的频率脉冲473nm激光15分钟,以诱导LTD和反向可卡因诱导的可塑性。这种操作导致与可卡因相关的线索诱导药物寻求行动的能力长期降低。

Introduction

药物滥用在美国和全世界都是一个非常严重的公共卫生问题。尽管进行了数十年的深入研究,但有效的治疗选择很少12。治疗的一个主要挫折是,长期使用药物在环境线索和药物本身之间产生了长期的联想记忆。再次暴露于与药物相关的线索会推动生理和行为反应,从而激发持续吸毒和复发3。一种新的治疗策略是制定基于记忆的治疗方法,旨在操纵调节药物线索关联的回路。最近,观察到外侧杏仁核 (LA) 中的突触,特别是丘脑内侧膝状核 (MGN) 产生的突触,通过重复提示相关的可卡因自我给药而得到加强,并且这种增强作用可以支持可卡因寻找行为45。因此,有人提出,提示诱导的恢复可以通过逆转MGN-LA突触的可塑性来减弱。

精确靶向特定大脑回路的突触可塑性的能力一直是该领域的一个主要挑战。传统的药理学工具在减少复发行为方面取得了一些成功,但由于无法操纵单个突触而受到限制。然而,体内光遗传学的最新发展提供了克服这些限制和以时间和空间精度控制神经通路所需的工具678通过在特定的脑回路中表达光敏视蛋白,激光可用于激活或抑制回路。频率依赖性光刺激可用于特异性地操纵行为动物中电路的突触可塑性。

本手稿概述了使用 体内 光遗传学操纵行为相关的MGN-LA回路的程序。首先,兴奋性视蛋白oChIEF在MGN中表达,光纤在LA中双侧植入。然后训练动物以线索依赖的方式自我管理可卡因,这增强了MGN-LA途径。接下来,使用473nm激光的持续低频刺激来产生电路特定的LTD.逆转可卡因使用引起的可塑性导致线索触发与药物寻求行为相关的行动的能力长期降低。

Protocol

该协议中描述的实验符合美国国立卫生研究院实验动物护理和使用指南规定的指南,并得到匹兹堡大学机构 动物护理和使用 委员会的批准。所有程序均使用成年幼稚的Sprague-Dawley大鼠进行,到达时重275-325克。 1. 光纤植入物和跳线的构造 按照先前发布的协议准备光纤植入物9.本协议中描述的实验使用200μm芯光纤(0.5 NA)和Ø1.25 mm多…

Representative Results

概述实验顺序的时间线如图 1 所示。在整个行为实验中,可卡因输注的次数以及在主动杠杆上做出的反应数量可以衡量可卡因寻求行为的强度。在可卡因自我给药的最初几天,积极反应的数量应在每个采集日逐渐增加,然后在第二周稳定下来。相反,在整个实验过程中,非活动杠杆响应应保持较低水平(图2A)。在仪器性灭绝的第一天,主动杠杆反应?…

Discussion

如上所述,有几个关键步骤对于获得适当的实验结果很重要。该方案可能只对正确获得可卡因自我给药的动物有效,迄今为止,它仅使用上述参数进行了测试。可卡因剂量、强化计划和提示参数可能会被修改,但对行为结果的影响可能很小,除了二阶强化方案可能导致杏仁核非依赖性可卡因的寻找,这可能会降低手术的有效性,尽管这尚未经过直接测试14.在整个协议中有几个要?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者希望感谢USPHS拨款K01DA031745(MMT),R01DA042029(MMT),DA035805(YHH),F31DA039646(MTR),T32031111(MTR)和宾夕法尼亚州卫生部的支持。

Materials

0.9% Saline Fisher Scientific NC0291799
A.M.P.I. Stimulus Isolator Iso-Flex
AAV5.hSyn.oChIEF.tdTomato Duke Viral Vector Core (via Roger Tsien) #268 See Lin et al., 2009; Nabavi et al., 2014
AAV5.hSyn.tdTomato (Control) Duke Viral Vector Core Control See Lin et al., 2009; Nabavi et al., 2014
Artificial Tears (Opthalmic Ointment) Covetrus 70349
ATP Magnesium Salt Fisher Scientific A9187
Betadine Butler Schein 38250
Calcium chloride Fisher Scientific C1016
Cesium chloride Fisher Scientific 289329
Cesium hydroxide Fisher Scientific 516988
Cesium methanesulfonate Fisher Scientific C1426
Cocaine HCl NIDA Drug Supply Center 9041-001
Cryostat Leica CM1950
D-Glucose Sigma-Aldrich G8270
DMSO Fisher Scientific BP231-1
Dual-Channel Temperature Controller Warner Instruments TC-344C
EGTA Fisher Scientific E3889
Ethanol University of Pittsburgh Chemistry Stockroom 200C5000
Ferrule Dust Caps Thor Labs CAPL White plastic dust caps for 1.25 mm Ferrules
Ferrule Mating Sleeves Doric Lenses F210-3011 Sleeve_BR_1.25, Bronze, 1.25 mm ID
Ferrules Precision Fiber Products MM-FER2007C-2300 Ø1.25 mm Multimode LC/PC Ceramic ferrule, Ø230 μm hole size
Fiber Optic Thor Labs FP200URT 200 μm core multimode fiber (0.5 NA)
Fiber Optic Rotary Joint Prizmatix (Ordered from Amazon) 18 mm diameter, FC-FC connector for fiber
Fiber Stripping Tool Thor Labs T12S21
Fluoroshield with DAPI Sigma-Aldrich F6057
Gentamicin Henry Schein 6913
GTP Sodium Salt Fisher Scientific G8877
Hamilton syringe Hamilton 80085 10 μL volume, 26 gauge, 2 inch, point style 3
Heat Gun Allied Electronics 972-6966 250 V, 750-800 °F
Heat-Curable Epoxy Precision Fiber Products PFP-353ND-8OZ
Heparin Henry Schein 55737
HEPES Sigma-Aldrich H3375
Hydrochloric Acid Fisher Scientific 219405490
Isoflurane Henry Schein 29405
Ketamine HCl Henry Schein 55853 Ketamine is a controlled substance and should be handled according to institutional guidelines
Lactated Ringer’s Henry Schein 9846
Laser, driver, and laser-to-fiber coupler OEM Laser Systems BL-473-00100-CWM-SD-xx-LED-0 100 mW, 473-nm, diode-pumped solid-state laser (One option)
L-glutathione Fisher Scientific G4251
Lidocaine Butler Schein 14583
Light Sensor Thor Labs PM100D Compact energy meter console with digital display
Loctite instant adhesive Grainger 5E207
Magnesium sulfate Sigma-Aldrich 203726
Microelectrode Amplifier/Data Acquisition Molecular Devices MULTICLAMP700B / Digidata 1440A
Microinjector pump Harvard Apparatus 70-4501 Dual syringe
Micromanipulator Sutter Instruments MPC-200/ROE-200
Microscope Olympus BX51WI Upright microscope for electrophysiology
Microscope Olympus BX61VS Epifluorescent slide-scanning microscope
N-methyl-D-glucamine Sigma-Aldrich M2004
Orthojet dental cement, liquid Lang Dental 1504BLK black
Orthojet dental cement, powder Lang Dental 1530BLK Contemporary powder, black
Paraformaldehyde Sigma-Aldrich P6148
Patch Cables Thor Labs FP200ERT Multimode, FT030 Tubing
Picrotoxin Fisher Scientific AC131210010
Polishing Disc Thor Labs D50FC
Polishing Pad Thor Labs NRS913 9" x 13"
Polishing Paper Thor Labs LFG5P 5 μm grit
Polishing Paper Thor Labs LFG3P 3 μm grit
Polishing Paper Thor Labs LFG1P 1 μm grit
Polishing Paper Thor Labs LFG03P 0.3 μm grit
Potassium chloride Sigma-Aldrich P9333
Potassium hydroxide Fisher Scientific P5958
Potassium methanesulfonate Fisher Scientific 83000
QX-314-Cl Alomone Labs Q-150
Rimadyl (Carprofen) Henry Schein 24751
Self-Administration Chambers/Software Med Associates MED-NP5L-D1
Sodium bicarbonate Sigma-Aldrich S5761
Sodium chloride Sigma-Aldrich S7653
Sodium Hydroxide Sigma-Aldrich 1064980500
Sodium L-Ascorbate Sigma-Aldrich A7631
Sodium Pentobarbital Henry Schein 24352
Sodium phosphate Sigma-Aldrich S9638
Sodium phosphocreatine Fisher Scientific P7936
Sodium pyruvate Sigma-Aldrich P2256
Stainless steel machine screws WW Grainger  6GB25 M2-0.40mm Machine Screw, Pan, Phillips, A2 Stainless Steel, Plain, 3 mm Length
Stereotaxic adapter for ferrules Thor Labs XCL
Stereotaxic Frame Stoelting 51603
Sucrose Sigma-Aldrich S8501
Suture Thread Fine Science Tools 18020-50 Silk thread; Size: 5/0, Diameter: 0.12 mm
TEA-Chloride Fisher Scientific T2265
Thiourea Sigma-Aldrich T8656
Vetbond Tissue Adhesive Covetrus 001505
Vibratome Leica VT1200S
Xylazine Butler Schein 33198

References

  1. Connors, N. J., Hoffman, R. S. Experimental treatments for cocaine toxicity: A difficult transition to the bedside. Journal of Pharmacology and Experimental Therapeutics. 347 (2), 251-257 (2013).
  2. Makani, R., Pradhan, B., Shah, U., Parikh, T. Role of repetitive transcranial magnetic stimulation (rTMS) in treatment of addiction and related disorders: A systematic review. Current Drug Abuse Reviews. 10 (1), 31-43 (2017).
  3. Shaham, Y., Shalev, U., Lu, L., De Wit, H., Stewart, J. The reinstatement model of drug relapse: History, methodology and major findings. Psychopharmacology. 168 (1-2), 3-20 (2003).
  4. Rich, M. T., Huang, Y. H., Torregrossa, M. M. Plasticity at Thalamo-amygdala Synapses Regulates Cocaine-Cue Memory Formation and Extinction. Cell Reports. 26 (4), 1010-1020 (2019).
  5. Rich, M. T., Huang, Y. H., Torregrossa, M. M. Calcineurin promotes neuroplastic changes in the amygdala associated with weakened cocaine-cue memories. Journal of Neuroscience. 40 (6), 1344-1354 (2020).
  6. Deisseroth, K. Optogenetics 10 years of microbial opsins in neuroscience. Nature Neuroscience. 18 (9), 1213-1225 (2015).
  7. Gradinaru, V., et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell. 141 (1), 154-165 (2010).
  8. Nabavi, S., Fox, R., Proulx, C. D., Lin, J. Y., Tsien, R. Y., Malinow, R. Engineering a memory with LTD and LTP. Nature. 511 (7509), 348-352 (2014).
  9. Sparta, D. R., Stamatakis, A. M., Phillips, J. L., Hovelsø, N., Van Zessen, R., Stuber, G. D. Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nature Protocols. 7 (1), 12-23 (2012).
  10. Stripling, J. S. A simple intravenous catheter for use with a cranial pedestal in the rat. Pharmacology, Biochemistry and Behavior. 15 (5), 823-825 (1981).
  11. Lin, J. Y., Lin, M. Z., Steinbach, P., Tsien, R. Y. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophysical Journal. 96 (5), 1803-1814 (2009).
  12. Paxinos, G., Watson, C. . The Rat Brain in Stereotaxic Coordinates Hard Cover Edition. , 466 (2013).
  13. Ting, J. T., Daigle, T. L., Chen, Q., Feng, G. Acute brain slice methods for adult and aging animals: Application of targeted patch clamp analysis and optogenetics. Methods in Molecular Biology. 1183, 221-242 (2014).
  14. Bender, B. N., Torregrossa, M. M. Dorsolateral striatum dopamine-dependent cocaine seeking is resistant to pavlovian cue extinction in male and female rats. Neuropharmacology. 182, (2021).
  15. Milton, A. L., Everitt, B. J. The persistence of maladaptive memory: Addiction, drug memories and anti-relapse treatments. Neuroscience and Biobehavioral Reviews. 36 (4), 1119-1139 (2012).
  16. Torregrossa, M. M., Taylor, J. R. Learning to forget: Manipulating extinction and reconsolidation processes to treat addiction. Psychopharmacology. 226 (4), 659-672 (2013).
  17. Kalivas, P. W., Volkow, N. D. The Neural Basis of Addiciton: A Pathology of Motivation and Choice. American Journal of Psychiatry. 162 (8), 1403-1413 (2005).
  18. Stefanik, M. T., et al. Optogenetic inhibition of cocaine seeking in rats. Addiction Biology. 18 (1), 50-53 (2013).
  19. Arguello, A. A., et al. Role of a Lateral Orbital Frontal Cortex-Basolateral Amygdala Circuit in Cue-Induced Cocaine-Seeking Behavior. Neuropsychopharmacology. 42 (3), 727-735 (2017).
  20. Cruz, A. M., Spencer, H. F., Kim, T. H., Jhou, T. C., Smith, R. J. Prelimbic cortical projections to rostromedial tegmental nucleus play a suppressive role in cue-induced reinstatement of cocaine seeking. Neuropsychopharmacology. 46 (8), 1399-1406 (2021).
  21. Cruz, F. C., Javier Rubio, F., Hope, B. T. Using c-fos to study neuronal ensembles in corticostriatal circuitry of addiction. Brain Research. 1628, 157-173 (2015).
  22. Rubio, F. J., et al. Context-Induced Reinstatement of Methamphetamine Seeking Is Associated with Unique Molecular Alterations in Fos-Expressing Dorsolateral Striatum Neurons. Journal of Neuroscience. 35 (14), 5625-5639 (2015).
  23. Siuda, E. R., et al. Spatiotemporal Control of Opioid Signaling and Behavior. Neuron. 86 (4), 923-935 (2015).
  24. McCracken, C. B., Grace, A. A. High-frequency deep brain stimulation of the nucleus accumbens region suppresses neuronal activity and selectively modulates afferent drive in rat orbitofrontal cortex in vivo. Journal of Neuroscience. 27 (46), 12601-12610 (2007).
  25. Zhang, H., Bramham, C. R. Bidirectional Dysregulation of AMPA Receptor-Mediated Synaptic Transmission and Plasticity in Brain Disorders. Frontiers in Synaptic Neuroscience. 12 (26), (2020).

Play Video

Cite This Article
Rich, M. T., Huang, Y. H., Torregrossa, M. M. Using Optogenetics to Reverse Neuroplasticity and Inhibit Cocaine Seeking in Rats. J. Vis. Exp. (176), e63185, doi:10.3791/63185 (2021).

View Video