Summary

果蝇 被动回避行为作为研究联想性厌恶学习的新范式

Published: October 15, 2021
doi:

Summary

这项工作描述了一个简单的行为范式,可以分析成年果蝇的厌恶联想学习。该方法基于抑制由于特定环境环境与电击之间形成的关联而导致的先天负地理出租车行为。

Abstract

该协议描述了一种分析成年果蝇(Drosophila melanogaster)中厌恶性联想学习的新范例。这种范式类似于实验室啮齿动物的被动回避行为,其中动物学会避开以前接受过电击的隔间。该测定利用了苍蝇中的负地理出租车,这表现为当它们被放置在垂直表面上时爬上去的冲动。该设置由垂直方向的上部和下部隔间组成。在第一次试验中,一只苍蝇被放置在较低的隔间中,通常从那里在3-15秒内离开,然后进入上层隔间,在那里它受到电击。在第二次试验期间,24小时后,潜伏期显着增加。同时,与第一次试验相比,电击次数减少,表明苍蝇形成了关于上部隔室的长期记忆。延迟和冲击次数的记录可以使用计数计数器和秒表或基于Arduino的简单设备执行。为了说明如何使用该测定,本文表征了 D. melanogaster D. simulans 男性和女性的被动回避行为。对潜伏期和冲击次数的比较表明, D. melanogaster D. simulans 苍蝇都有效地学习了被动回避行为。雄性和雌性苍蝇之间没有观察到统计学差异。然而,在第一次试验中,男性进入上部隔间时速度稍快,而女性在每次保留试验中接受的电击次数略高。西方饮食(WD)显着损害了雄性苍蝇的学习和记忆,而飞行运动抵消了这种效果。综上所述,苍蝇的被动回避行为提供了一种简单且可重复的测定,可用于研究学习和记忆的基本机制。

Introduction

学习和记忆是一种进化上古老的环境适应机制,从果蝇(D.)到人类1。果蝇是一种强大的模型生物,用于研究学习和记忆的基本原理,因为它提供了广泛的强大遗传工具来剖析内在的分子机制2。开创性的基因筛查研究确定了对学习和记忆至关重要的rutabaga3amnesiac4dunce5基因2,利用了嗅觉调节,因为果蝇依靠其敏锐的嗅觉来寻找食物,潜在的配偶并避开捕食者6

嗅觉调节已成为研究学习和记忆机制的流行范式,这要归功于Tully和Quinn78引入嗅觉T迷宫。随后,已经提出了其他测量各种类型的学习和记忆的方法,包括视觉条件9,求偶条件10,厌恶光速抑制测定11和黄蜂暴露条件反射12。然而,大多数这些检测方法都有一个复杂的设置,必须在大学车间定制或通过供应商购买。这里描述的范式基于一个简单的行为测定,用于研究苍蝇的厌恶联想学习,这些学习可以很容易地与一些可用的用品组装在一起。

所描述的范式相当于实验室小鼠和大鼠的被动(或抑制)回避行为,其中动物学会避开以前接受过电脚电击的隔间13。在Murids中,该程序基于他们对强光的天生回避和对较暗区域的偏好14。在第一次试验中,动物被放入明亮的隔间,从那里动物迅速离开,踏入一个黑暗的隔间,在那里发出电脚电击。通常,一次试验足以形成坚实的长期记忆,导致24小时后的潜伏期显着增加。然后,潜伏期被用作动物记住厌恶刺激与特定环境之间关联的能力的指标15

这项工作描述了使用 D. 作为模型系统的类似程序,与啮齿动物模型相比,它具有几个优点,包括成本效益,更大的样本量,缺乏监管监督以及获得强大的遗传工具1617。该过程基于负面的地理出租车行为,这表现在苍蝇被放置在垂直表面上时爬上去的冲动18。该装置由两个垂直腔室组成。在第一次试验中,将果蝇放入较低的隔间。从那里,它通常在3-15秒内离开,进入上层隔间,在那里它受到电击。在1分钟的试验中,一些苍蝇可能偶尔会重新进入上层隔间,从而导致额外的电击。在测试阶段,24小时后,延迟显着增加。同时,与第一天相比,电击次数减少,表明苍蝇在上部隔间形成了厌恶的联想记忆。然后使用延迟,电击次数以及梳理发作的持续时间和频率来分析动物行为以及形成和记住厌恶刺激与特定环境之间关联的能力。具有代表性的结果表明,暴露于西方饮食(WD)会显着损害雄性苍蝇的被动回避行为,这表明WD会深刻影响苍蝇的行为和认知。相反,飞行锻炼减轻了WD的负面影响,改善了被动回避行为。

Protocol

1. 被动回避装置的制备 钻一个垂直于14 mL聚丙烯培养管壁面的4 mm孔,距离管底部8 mm。注:使用电钻和5/32钻头以获得最佳效果。 使用钢美工刀,切掉14 mL聚丙烯培养管的上部,形成45毫米长的管底部碎片。底部碎片用作下部隔间。 使用单刃剃须刀片切断1,000 μL蓝色移液器吸头的尖端,使开口足够宽,以便单个苍蝇通过。切掉蓝色尖端的变窄部分,形成一个12…

Representative Results

被动回避在 D. melanogaster (Canton-S)和 D中进行了研究。 模拟。实验比较了连续试验之间的潜伏期和接受冲击的数量。最初,实验是用3-4天大的雄性 D. melanogaster 苍蝇进行的。在24°C的气候受控环境中,在12小时的光暗循环,70%湿度和受控的种群密度下,将苍蝇保持在标准布卢明顿配方饮食中。通过保持所有组的繁殖条件恒定来控制密度。将15只雄性和15只雌性在24°C,70%湿…

Discussion

避免威胁性刺激是各种物种从优雅到人类的适应性行为的关键特征32。回避学习程序通常需要逃避厌恶事件,是自1970年代以来常用的行为任务,用于研究实验室啮齿动物的学习和记忆过程133在主动回避程序中,冷漠的刺激或条件信号(CS)之后是厌恶事件或无条件信号(US),动物通过执行特定的行为任务来学习避免。在被动回避程序…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究得到了NIH R15ES029673(AKM)的部分支持。

Materials

Bloomington Formulation diet Nutri-Fly  66-112 Available from Genesee Scientific Inc., San Diego, CA
1000 µL Blue tip Fisher NC9546243
17 x 100 mm 14 mL polypropylene culture tube VWR  60818-689
Aduino-based Automatic Kontrol Module In-house AKM-007 This unit is optional. Complete description, schematics, wiring diagram and a code are provided at the ECU Digital Market – https://digitalmarket.ecu.edu/akmmodule
Dual-Display 2-Channel  Digital Clock/Timer Digi-Sense AO-94440-10 https://www.amazon.com/Cole-Parmer-AO-94440-10-Dual-Display-2-Channel-Jumbo-Digit/dp/B00PR0809G/ref=sr_1_5?dchild=1&keywords=Dual-Display+timer+jumbo&qid=1627660660&sr=
8-5#customerReviews
Electronic Finger Counter N/A N/A https://www.amazon.com/gp/product/B01M8IRK6F/ref=ppx_yo_dt_b_search_asin_title?ie=UTF8&psc=1
Fisherbrand Sparkleen 1 Detergent Fisher Scientific 04-320-4
Fly mouth aspirator In-house Prepared as described in reference 19.
Grass S88 stimulator N/A N/A Could be replaced with any stimulator which can provide described parameters
Kim-wipes Fisher Scientific 06-666 Kimberly-Clark Professional 34120
Metal block for fly immobilization In-house 4 x 13 x 23.5cm aluminum block
Nutiva USDA Certified Organic, non-GMO, Red Palm Oil Nutiva N/A https://www.amazon.com/Nutiva-Certified-Cold-Filtered-Unrefined-Ecuadorian/dp/B00JJ1E83G/ref=sxts_rp_s1_0?cv_ct_cx=Nutiva+USDA+Certified+Organic%2C+non-GMO%2C+Red+Palm+Oil&dchild=1&keywords=Nutiva+USDA+Certified+Organic%2C+non-GMO%2C+Red+Palm+Oil&pd_rd_i=B00JJ1E83G&pd_
rd_r=f35e9d2f-afe4-44b6-afc2-1c9cd705be18&pd_rd_w=
R3Zb4&pd_rd_wg=eUv1m&pf_rd_
p=c6bde456-f877-4246-800f-44405f638777&pf
_rd_r=M94N11RC7NH333EMJ66Y
&psc=1&qid=1627661533&sr=1-1-f0029781-b79b-4b60-9cb0-eeda4dea34d6
Shock tube CelExplorer TMA-201 https://www.celexplorer.com/product_detail.asp?id=217&MainType=110&SubType=8
Stopwatch Accusplit A601XLN https://www.amazon.com/gp/product/B0007ZGZYI/ref=ppx_yo_dt_b_search_asin_title?ie=UTF8&psc=1
Transparent vinyl tubing (3/4” OD, 5/8” ID) Lowes Avaiable from Lowes

References

  1. Kandel, E. R., Dudai, Y., Mayford, M. R. The molecular and systems biology of memory. Cell. 157 (1), 163-186 (2014).
  2. McGuire, S. E., Deshazer, M., Davis, R. L. Thirty years of olfactory learning and memory research in Drosophila melanogaster. Progress in Neurobiology. 76 (5), 328-347 (2005).
  3. Livingstone, M. S., Sziber, P. P., Quinn, W. G. Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant. Cell. 37 (1), 205-215 (1984).
  4. Quinn, W. G., Sziber, P. P., Booker, R. The Drosophila memory mutant amnesiac. Nature. 277 (5693), 212-214 (1979).
  5. Dudai, Y., Jan, Y. N., Byers, D., Quinn, W. G., Benzer, S. dunce, a mutant of Drosophila deficient in learning. Proceedings of the National Academy of Sciences of the United States of America. 73 (5), 1684-1688 (1976).
  6. Busto, G. U., Cervantes-Sandoval, I., Davis, R. L. Olfactory learning in Drosophila. Physiology. 25 (6), 338-346 (2010).
  7. Tully, T., Quinn, W. G. Classical conditioning and retention in normal and mutant Drosophila melanogaster. Journal of Comparative Physiology. A: Sensory, Neural, and Behavioral Physiology. 157 (2), 263-277 (1985).
  8. Wright, N. J. Evolution of the techniques used in studying associative olfactory learning and memory in adult Drosophila in vivo: A historical and technical perspective. Invertebrate Neuroscience. 14 (1), 1-11 (2014).
  9. Vogt, K., Yarali, A., Tanimoto, H. Reversing stimulus timing in visual conditioning leads to memories with opposite valence in Drosophila. PloS One. 10 (10), 0139797 (2015).
  10. Koemans, T. S., et al. Drosophila courtship conditioning as a measure of learning and memory. Journal of Visualized Experiments. (124), e55808 (2017).
  11. Ali, Y. O., Escala, W., Ruan, K., Zhai, R. G. Assaying locomotor, learning, and memory deficits in Drosophila models of neurodegeneration. Journal of Visualized Experiments. (49), e2504 (2011).
  12. Bozler, J., et al. A systems level approach to temporal expression dynamics in Drosophila reveals clusters of long term memory genes. Plos Genetics. 13 (10), 1007054 (2017).
  13. Atucha, E., Roozendaal, B. The inhibitory avoidance discrimination task to investigate accuracy of memory. Frontiers in Behavioral Neuroscience. 9, 60 (2015).
  14. Thiels, E., Hoffman, E. K., Gorin, M. B. A reliable behavioral assay for the assessment of sustained photophobia in mice. Current Eye Research. 33 (5), 483-491 (2008).
  15. Detrait, E. R., Hanon, E., Dardenne, B., Lamberty, Y. The inhibitory avoidance test optimized for discovery of cognitive enhancers. Behavior Research Methods. 41 (3), 805-811 (2009).
  16. Piper, M. D. W., Partridge, L. Drosophila as a model for ageing. Biochimica et Biophysica Acta – Molecular Basis of Disease. 1864 (9), 2707-2717 (2018).
  17. Chalmers, J., et al. A multicomponent screen for feeding behaviour and nutritional status in Drosophila to interrogate mammalian appetite-related genes. Molecular Metabolism. 43, 101127 (2021).
  18. Gargano, J. W., Martin, I., Bhandari, P., Grotewiel, M. S. Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila. Experimental Gerontology. 40 (5), 386-395 (2005).
  19. Yang, D. Simple homemade tools to handle fruit flies-Drosophila melanogaster. Journal of Visualized Experiments. (149), e59613 (2019).
  20. Barradale, F., Sinha, K., Lebestky, T. Quantification of Drosophila grooming behavior. Journal of Visualized Experiments. (125), e55231 (2017).
  21. Denmark, A., et al. The effects of chronic social defeat stress on mouse self-grooming behavior and its patterning. Behavioural Brain Research. 208 (2), 553-559 (2010).
  22. Kalueff, A. V., et al. Neurobiology of rodent self-grooming and its value for translational neuroscience. Nature Reviews: Neuroscience. 17 (1), 45-59 (2016).
  23. Motulsky, H. . Intuitive biostatistics: A nonmathematical guide to statistical thinking. Fourth edition. , (2018).
  24. Qiao, B., Li, C., Allen, V. W., Shirasu-Hiza, M., Syed, S. Automated analysis of long-term grooming behavior in Drosophila using a k-nearest neighbors classifier. Elife. 7, 34497 (2018).
  25. Mu, M. D., et al. A limbic circuitry involved in emotional stress-induced grooming. Nature Communications. 11 (1), 2261 (2020).
  26. Song, C., Berridge, K. C., Kalueff, A. V. Stressing’ rodent self-grooming for neuroscience research. Nature Reviews: Neuroscience. 17 (9), 591 (2016).
  27. Wang, C., Chan, J. S., Ren, L., Yan, J. H. Obesity reduces cognitive and motor functions across the lifespan. Neural Plasticity. 2016, 2473081 (2016).
  28. Lewis, A. R., Singh, S., Youssef, F. F. Cafeteria-diet induced obesity results in impaired cognitive functioning in a rodent model. Heliyon. 5 (3), 01412 (2019).
  29. Yohn, S. E., Galbraith, J., Calipari, E. S., Conn, P. J. Shared behavioral and neurocircuitry disruptions in drug addiction, obesity, and binge eating disorder: Focus on Group I mGluRs in the mesolimbic dopamine pathway. ACS Chemical Neuroscience. 10 (5), 2125-2143 (2019).
  30. Lopez-Taboada, I., Gonzalez-Pardo, H., Conejo, N. M. Western Diet: Implications for brain function and behavior. Frontiers in Psychololgy. 11, 564413 (2020).
  31. Murashov, A. K., et al. Preference and detrimental effects of high fat, sugar, and salt diet in wild-caught Drosophila simulans are reversed by flight exercise. FASEB Bioadvances. 3 (1), 49-64 (2021).
  32. Krypotos, A. M., Effting, M., Kindt, M., Beckers, T. Avoidance learning: A review of theoretical models and recent developments. Frontiers in Behavioral Neuroscience. 9, 189 (2015).
  33. Binder, M. D., Hirokawa, N., Windhorst, U. . Encyclopedia of Neuroscience. , 3093 (2009).
  34. Mery, F., Belay, A. T., So, A. K., Sokolowski, M. B., Kawecki, T. J. Natural polymorphism affecting learning and memory in Drosophila. Proceedings of the National Academy of Sciences of the United States of America. 104 (32), 13051-13055 (2007).
  35. Tan, Y., Yu, D., Pletting, J., Davis, R. L. Gilgamesh is required for rutabaga-independent olfactory learning in Drosophila. Neuron. 67 (5), 810-820 (2010).
  36. Ögren, S. O., Stiedl, O., Stolerman, I. P. . Encyclopedia of Psychopharmacology. , 960-967 (2010).

Play Video

Cite This Article
Pak, E. S., Murashov, A. K. Drosophila Passive Avoidance Behavior as a New Paradigm to Study Associative Aversive Learning. J. Vis. Exp. (176), e63163, doi:10.3791/63163 (2021).

View Video