Summary

体内 大型动物视网膜神经节细胞及视神经功能及结构的评估方法

Published: February 26, 2022
doi:

Summary

在这里,我们在山羊和恒河猴中进行了几次 体内 测试(闪光视觉诱发电位,模式视网膜电镜和视相干断层扫描),以了解视神经及其神经元的结构和功能。

Abstract

视神经从视网膜神经节细胞收集轴突信号,并将视觉信号传递到大脑。视神经损伤的大型动物模型对于将新的治疗策略从啮齿动物模型转化为临床应用至关重要,因为它们在大小和解剖结构上与人类更相似。在这里,我们描述了一些 体内 方法来评估大型动物视网膜神经节细胞(RGC)和视神经(ON)的功能和结构,包括视觉诱发电位(VEP),模式视网膜电镜(PERG)和光学相干断层扫描(OCT)。山羊和非人类灵长类动物都参与了这项研究。通过逐步介绍这些 体内 方法,我们希望提高不同实验室之间的实验再现性,并促进视神经病变的大型动物模型的使用。

Introduction

视神经(ON)由来自视网膜神经节细胞(RGC)的轴突组成,将视觉信号从视网膜传递到大脑。ON疾病,如青光眼,创伤性或缺血性视神经病变,经常导致不可逆的ON / RGC变性和破坏性视力丧失。虽然目前在啮齿动物模型的ON再生和RGC保护方面有许多突破123456,但大多数ON疾病的临床治疗在过去半个世纪中基本保持不变,结果不尽如人意78.为了填补基础研究和临床实践之间的空白,使用ON疾病的大型动物模型的转化研究通常是必要和有益的,因为它们与人类的解剖学相似性比啮齿动物模型更接近。

山羊和恒河猴是我们实验室中用于模拟人类ON疾病的两种大型动物物种。山羊眼球ON和相邻结构(眼眶和鼻腔,颅底等)的大小与基于颅骨CT扫描的人类相似9。因此,山羊模型提供了在人类使用之前评估和改进治疗装置或外科手术的机会。恒河猴作为非人类灵长类动物(NHP),具有类似人类的独特视觉系统,这在其他物种中不存在1011。此外,NHP对损伤和治疗的病理生理反应与人类非常相似12

大型动物研究中,用于纵向评估ON和RGC的结构和功能的体内测试非常重要。视网膜电图(PERG)已被用于评估RGC功能。闪光视觉诱发电位(FVEP)反映了视网膜 – 基因 – 皮质通路在视觉系统中的完整性。因此,PERG与FVEP相结合可以反映ON函数91314 。视网膜视相干断层扫描(OCT)成像可以显示具有高时间和空间分辨率的视网膜结构,从而能够测量视网膜神经节复合物(GCC)的厚度915。对于本研究中的电生理学检查,在测试前监测生命体征(热度,破裂率,血压)和血氧饱和度(SpO2)水平至关重要,因为这些参数对眼部血流有强大的影响,从而对视觉系统的功能有强大的影响。然而,为了简单起见,我们在进行OCT视网膜成像时没有监测生命体征。根据我们之前的研究9,OCT视网膜成像测量的GCC厚度相当稳定,节间变异系数接近3%。山羊和恒河猴的 体内 测试在我们之前的研究中已有详细描述9。在这里,我们介绍这些方法,以帮助提高实验透明度和可重复性。

Protocol

实验严格按照ARRIVE指南和美国国立卫生研究院实验室动物护理和使用指南进行,并遵守温州医科大学(WMU)机构动物护理和使用委员会和Joinn实验室(苏州)批准的协议。雄性Saanen山羊年龄为4至6个月,体重为19-23公斤,被安置在WMU动物设施中。雄性恒河猴年龄在5至6岁之间,体重为5-7公斤,被安置在Joinn动物设施中。将所有动物保持在受控温度(21±2°C)的空调室中,在12小时的光照/ 12小时黑暗循?…

Representative Results

图1A 显示了山羊中FVEP的代表性结果。虽然相同闪光强度下的波形具有相对相似性,但我们仍然建议检查波形两次。电子设备产生的电磁波会干扰采集到的电信号,导致基线噪声高,波形重复性差。因此,建议在电生理检查过程中确保没有多余的电子设备插入周围环境,以避免此类干扰,建议至少重复两次测量,以确定实验结果的稳定性和可重复性。当给两只眼睛打补丁时,…

Discussion

在这项研究中,我们提出了山羊和恒河猴的VEP,PERG和OCT方案。这些 体内 方法可以应用于各种视神经病变的大型动物模型,例如青光眼,缺血性或创伤性视神经病变和视神经炎9

PVEP比FVEP17更稳定和灵敏;但是,它不能在goat9中引发。因此,FVEP在山羊中进行,PVEP在我们的实验室中在恒河猴中进行,以评估视网膜 – 基?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

本研究由以下资助资助:中国国家重点研发计划(2021YFA1101200);温州市医学科研项目(Y20170188),国家重点研发计划(2016YFC1101200);国家自然科学基金(81770926;81800842);浙江省重点研发计划(2018C03G2090634);温州眼科医院重点研发项目(YNZD1201902)。赞助商或资助组织在这项研究的设计或实施中没有任何作用。

Materials

47.6 x 26.8 cm monitors DELL Inc. E2216HV The visual stimuli of contrast-reversal black-white checkerboards were displayed on screens
6.0 mm tracheal tube Henan Tuoren Medical Device Co., Ltd PVC 6.0 ensure the airway
alligator clip
atropine Guangdong Jieyang Longyang Animal pharmaceutical Co.,Ltd. reduce bronchial secretion and protect heart from vagal nerve activation
Carbomer Eye Gel Fabrik GmbH Subsidiary of Bausch & Lomb moisten the cornea and stabilize the recording electrodes
ERG-Jet recording electrodes Roland Consult Stasche&Finger GmbH 2300 La Chaux-De-Fonds ERG recording
eye speculum Shanghai Jinzhong Medical Device Co., Ltd ZYD020 open palpebral fissure
Heidelberg Spectralis OCT system Heidelberg Engineering OCT system
Imaging (https://www.heidelbergengineering.com/media/e-learning/Totara-US/files/pdf-tutorials/2238-003_Spectralis-Training-Guide.pdf)
isoflurane RWD Life Science Co., Ltd R510-22 isoflurane anesthesia
male Saanen goats Caimu Livestock Company, country (Hangzhou, China) The male Saanen goats, aged from 4 to 6 months with weight of 19–23 kg
needle electrode Roland Consult Stasche&Finger GmbH U51-426-G-D use for FVEP ground electrode and PERG reference electrodes
periphery venous catheter intravenously BD shanghai Medical Device Co., Ltd 383019 intravenous access for atropine and propofol
propofol Xian Lipont Enterprise Union Management Co.,Ltd. induce Isoflurane anesthesia in goat
Tropicamide Phenylephrine Eye Drops SANTEN OY, Japan 5% tropicamide and 5% phenylephrine hydrochloride
visual electrophysiology device Gotec Co., Ltd GT-2008V-III use for FVEP & PERG
xylazine Huamu Animal Health Products Co., Ltd. xylazine anesthesia: intramuscular injection of xylazine 3mg/kg
zoletil50 Virbac induce Isoflurane anesthesia in monkey

References

  1. Benowitz, L., Yin, Y. Rewiring the injured CNS: lessons from the optic nerve. Experimental Neurology. 209 (2), 389-398 (2008).
  2. Park, K. K., et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science. 322 (5903), 963-966 (2008).
  3. Duan, X., et al. Subtype-specific regeneration of retinal ganglion cells following axotomy: effects of osteopontin and mTOR signaling. Neuron. 85 (6), 1244-1256 (2015).
  4. Bei, F., et al. Restoration of visual function by enhancing conduction in regenerated axons. Cell. 164 (1-2), 219-232 (2016).
  5. He, Z., Jin, Y. Intrinsic control of axon regeneration. Neuron. 90 (3), 437-451 (2016).
  6. Yang, S. -. G., et al. Strategies to promote long-distance optic nerve regeneration. Frontiers in Cellular Neuroscience. 14, 119 (2020).
  7. Foroozan, R. New treatments for nonarteritic anterior ischemic optic neuropathy. Neurologic Clinics. 35 (1), 1-15 (2017).
  8. Singman, E. L., et al. Indirect traumatic optic neuropathy. Military Medical Research. 3, 2 (2016).
  9. Zhang, Y., et al. In vivo evaluation of retinal ganglion cells and optic nerve’s integrity in large animals by multi-modality analysis. Experimental Eye Research. 197, 108117 (2020).
  10. Tolbert, W. D., et al. From Rhesus macaque to human: structural evolutionary pathways for immunoglobulin G subclasses. mAbs. 11 (4), 709-724 (2019).
  11. Preuss, T., et al. . Specializations of the human visual system: the monkey model meets human reality. , 231-259 (2004).
  12. Friedli, L., et al. Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Science Translational Medicine. 7 (302), (2015).
  13. Porciatti, V. Electrophysiological assessment of retinal ganglion cell function. Experimental Eye Research. 141, 164-170 (2015).
  14. Smith, C. A., Vianna, J. R., Chauhan, B. C. Assessing retinal ganglion cell damage. Eye. 31 (2), 209-217 (2017).
  15. Schuman, J. S., et al. Optical coherence tomography and histologic measurements of nerve fiber layer thickness in normal and glaucomatous monkey eyes. Investigative Ophthalmology & Visual Science. 48 (8), 3645-3654 (2007).
  16. You, Y., et al. Improving reproducibility of VEP recording in rats: electrodes, stimulus source and peak analysis. Documenta Ophthalmologica. 123 (2), 109-119 (2011).
  17. Odom, J. V., et al. ISCEV standard for clinical visual evoked potentials: (2016 update). Documenta Ophthalmologica. 133 (1), 1-9 (2016).
  18. Zhang, J., et al. Silicone oil-induced ocular hypertension and glaucomatous neurodegeneration in mouse. eLife. 8, 45881 (2019).
  19. Seidman, S. H., Telford, L., Paige, G. D. Vertical, horizontal, and torsional eye movement responses to head roll in the squirrel monkey. Experimental Brain Research. 104 (2), 218-226 (1995).
  20. Porciatti, V. The mouse pattern electroretinogram. Documenta Ophthalmologica. 115 (3), 145-153 (2007).

Play Video

Cite This Article
Ye, Q., Yu, Z., Xia, T., Lu, S., Sun, J., Li, M., Xia, Y., Zhang, S., Wu, W., Zhang, Y. In Vivo Methods to Assess Retinal Ganglion Cell and Optic Nerve Function and Structure in Large Animals. J. Vis. Exp. (180), e62879, doi:10.3791/62879 (2022).

View Video