Relazioniamo un saggio semplice, efficiente in termini di tempo e ad alta produttività a base di spettroscopia a fluorescenza per la quantificazione dei filamenti di actina in campioni biologici ex vivo provenienti da tessuti cerebrali di roditori e soggetti umani.
Actin, la componente principale del citoscheletro, svolge un ruolo fondamentale nel mantenimento della struttura e della funzione neuronale. Sotto stati fisiologici, l’actina si verifica in equilibrio nelle sue due forme: globulare monomerico (G-actina) e filamentoso polimerizzato (F- actina). Ai terminali sinaptici, l’actina citoscheletro costituisce la base per le funzioni critiche pre e post-sinaptiche. Inoltre, i cambiamenti dinamici nello stato di polimerizzazione dell’actina (interconversione tra forme globulari e filamentose di actina) sono strettamente legati alle alterazioni legate alla plasticità nella struttura e nella funzione sinaptica. Qui riferiamo una metodologia modificata basata sulla fluorescenza per valutare lo stato di polimerizzazione dell’actina in condizioni ex vivo. Il saggio utilizza la phalloidina marcata fluorescentmente, una fllotoxina che si lega specificamente ai filamenti di actina (F-actin), fornendo una misura diretta dell’actina filamentosa polimerizzata. Come prova di principio, forniamo prove dell’idoneità del saggio sia negli omogeneati del tessuto cerebrale umano roditore che post mortem. Utilizzando latrunculinA A (un farmaco che depolimerizza i filamenti di actina), confermiamo l’utilità del saggio nel monitoraggio delle alterazioni nei livelli di F-actina. Inoltre, estendiamo il saggio alle frazioni biochimiche dei terminali sinaptici isolati in cui confermiamo una maggiore polimerizzazione dell’actina sulla stimolazione mediante depolarizzazione con K + extracellulareelevato.
L’actina della proteina citoscheletricha è coinvolta in molteplici funzioni cellulari, tra cui supporto strutturale, trasporto cellulare, motilità cellulare e divisione. L’actina si trova in equilibrio in due forme: actina globulare monomerica (G-actina) e actina filamentosa polimerizzata (F-actina). I rapidi cambiamenti nello stato di polimerizzazione dell’actina (interconversione tra le sue forme G e F) si traducono in un rapido assemblaggio e smontaggio dei filamenti e sono alla base dei suoi ruoli regolatori nella fisiologia cellulare. Actina forma il componente principale della struttura citoscheletricha neuronale e influenza una vasta gamma di funzioni neuronali1,2. Da notare che l’actina citoscheletro forma parte integrante della piattaforma strutturale dei terminali sinaptici. Come tale, è un importante determinante della morfogenesi sinaptica e della fisiologia e svolge un ruolo fondamentale nel controllo delle dimensioni, del numero e della morfologia delle sinapsi3,4,5. In particolare, l’actin polimerizzazione dinamica-depolimerizzazione è un fattore determinante del rimodellamento sinaptico associato alla plasticità sinaptica alla base dei processi di memoria e apprendimento. Infatti, sia le funzioni presnaptiche (come il rilascio di neurotrasmettitori6,7,8,9,10) che le funzioni postsinaptiche (rimodellamento dinamico correlato alla plasticità11,12,13,14)si basano criticamente su cambiamenti dinamici nello stato di polimerizzazione dell’actina citoscheletro.
In condizioni fisiologiche, i livelli di F-actina sono regolati dinamicamente e strettamente attraverso una via multimodale che comporta la modifica posttraslazionale4,15,16 e proteine leganti l’actina (ARP)4,17. Gli ARP possono influenzare la dinamica dell’actina a più livelli (come l’avvio o l’inibizione della polimerizzazione, l’induzione della ramificazione dei filamenti, la recidenza dei filamenti a pezzi più piccoli, la promozione della depolimerizzazione e la protezione dalla depolimerizzazione) e sono a loro volta sotto un rigoroso controllo modulatorio sensibile a vari segnali extra- e intracellulari18,19,20. Tali controlli normativi a più livelli impongono una rigida regolazione della dinamica dell’actina nel citoscheletro sinaptico, per mettere a punto gli aspetti pre e postinaptici della fisiologia neuronale sia allo stato basale che indotto dall’attività.
Dati gli importanti ruoli dell’actina nella fisiologia neuronale, non sorprende che diversi studi abbiano fornito prove di alterazioni della dinamica dell’actina come eventi patogeni critici legati a una vasta gamma di disturbi neurologici tra cui neurodegenerazione, malattie psicologiche e disturbi del neurosviluppo3,21,22,23,24,25,26,27. Nonostante la ricchezza di dati di ricerca che indicano ruoli chiave dell’actina nella fisiologia neuronale e nella fisiopatologia, tuttavia, permangono lacune significative nella comprensione delle dinamiche dell’actina, in particolare nel citoscheletro sinaptico. Sono necessari ulteriori studi di ricerca per avere una migliore comprensione dell’actina neuronale e delle sue alterazioni in condizioni patologiche. Una delle principali aree di interesse in questo contesto è la valutazione dello stato di polimerizzazione dell’actina. Esistono kit commerciali occidentali a base di gonfiore (kit biochimico di dosaggio G-Actin/F-Actin in vivo; Cytoskeleton SKU BK03728,29) e saggi fatti in casa per la valutazione dei livelli di F-actin6. Tuttavia, poiché questi richiedono l’isolamento biochimico di F-actina e G-actina e poiché la loro successiva quantificazione si basa su protocolli di immunoblotting, possono richiedere molto tempo. Nel presente documento viene descritto un saggio a base di spettroscopia a fluorescenza adattato da unostudio precedente 30 con modifiche che possono essere utilizzate per valutare sia i livelli basali di F-actina, sia i cambiamenti dinamici nel suo assemblaggio-smontaggio. In particolare, abbiamo modificato in modo efficiente il protocollo originale che richiede campioni adatti per una cuvetta da 1 mL all’attuale formato di piastra da 96 porti. Il protocollo modificato ha quindi ridotto significativamente la quantità di tessuto/campione richiesta per il saggio. Inoltre, forniamo prove che il protocollo è adatto non solo per gli omogeneati del tessuto cerebrale, ma anche per le frazioni subcellulari come terminali sinaptici isolati (sinaptosomi e sinaptoneurosomi). Infine, il saggio può essere utilizzato per tessuti cerebrali roditori appena sezionati e campioni cerebrali umani post mortem conservati a lungo termine. Da notare che, mentre il saggio è presentato in un contesto neuronale, può essere opportunamente esteso ad altri tipi di cellule e processi fisiologici ad essi associati.
Il saggio qui descritto, essenzialmente adattato da unostudio precedente 30 con modifiche, utilizza una phallotoxin, la falloidina contrassegnata con un’etichetta fluorescente. Gli analoghi fluorescenti della falloidina sono considerati il gold standard per la colorazione dei filamenti di actina nei tessutifissi 47,48,49. In effetti, sono gli strumenti più antichi per identificare specificamente i filame…
The authors have nothing to disclose.
Questo lavoro fu supportato dalla Fondazione Neurologica della Nuova Zelanda (1835-PG), dal Consiglio per la Ricerca sanitaria della Nuova Zelanda (#16-597) e dal Dipartimento di Anatomia dell’Università di Otago, Nuova Zelanda. Siamo in debito con la Banca neurologica dei tessuti di HCB-IDIBAPS BioBank (Spagna) per i tessuti cerebrali umani. Ringraziamo Jiaxian Zhang per il suo aiuto nella registrazione e nella modifica del video.
3.5 mL, open-top thickwall polycarbonate tube | Beckman Coulter | 349622 | For gradient centrifugation (synaptosome prep) |
Alexa Fluor 647 Phalloidin | Thermo Fisher Scientific | A22287 | F-actin specific ligand |
Antibody against b-actin | Santa Cruz Biotechnology | Sc-47778 | For evaluation of total actin levels by immunoblotting |
Antibody against GAPDH | Abcam | Ab181602 | For evaluation of GAPDH levels by immunoblotting |
Bio-Rad Protein Assay Dye Reagent Concentrate | Bio-Rad | 5000006 | Bradford based protein estimation |
Calcium chloride dihydrate (CaCl2·2H2O) | Sigma-Aldrich | C3306 | Krebs buffer component |
cOmplete, Mini, EDTA-free Protease Inhibitor Cocktail | Sigma-Aldrich | 4693159001 | For inhibition of endogenous protease activity during sample preparation |
Corning 96-well Clear Flat Bottom Polystyrene | Corning | 3596 | For light-scattering measurements |
D-(+)-Glucose | Sigma-Aldrich | G8270 | Krebs buffer component |
Dimethyl sulfoxide | Sigma-Aldrich | D5879 | Solvent for phalloidin and latrunculin A |
Fluorescent flatbed scanner (Odyssey Infrared Scanner) | Li-Cor Biosciences | For detection of immunoreactive signals on immunoblots | |
Glutaraldehyde solution (25% in water) Grade II | Sigma-Aldrich | G6257 | Fixative |
HEPES | Sigma-Aldrich | H3375 | Buffer ingredient for sample preparation and Krebs buffer component |
Latrunculin A | Sigma-Aldrich | L5163 | Depolymerizer of actin filaments |
Magnesium chloride hexahydrate (MgCl2·6H2O) | Sigma-Aldrich | M2670 | Krebs buffer component |
Microplates | |||
Mitex membrane filter 5 mm | Millipore | LSWP01300 | Preparation of synaptoneurosomes |
Nunc F96 MicroWell Black Plate | Thermo Fisher Scientific | 237105 | For fluorometric measurements |
Nylon net filter 100 mm | Millipore | NY1H02500 | Preparation of synaptoneurosomes |
Phosphatase Inhibitor Cocktail IV | Abcam | ab201115 | For inhibition of endogenous phosphatase activity during sample preparation |
Potassium chloride (KCl) | Sigma-Aldrich | P9541 | Krebs buffer component and for depolarization of synaptic terminals |
Potassium phosphate monobasic ((KH2PO4) | Sigma-Aldrich | P9791 | Krebs buffer component |
Sodium borohydride (NaBH4) | Sigma-Aldrich | 71320 | Component of Permeabilization buffer |
Sodium chloride (NaCl) | LabServ (Thermo Fisher Scientific) | BSPSL944 | Krebs buffer component |
Sodium hydrogen carbonate (NaHCO3) | LabServ (Thermo Fisher Scientific) | BSPSL900 | Krebs buffer component |
SpectraMax i3x | Molecular Devices | For fluorometric measurements | |
Sucrose | Fisher Chemical | S/8600/60 | Buffer ingredient for sample preparation |
Swimnex Filter Holder | Millipore | Sx0001300 | Preparation of synaptoneurosomes |
Tissue grinder 5 mL Potter-Elvehjem | Duran Wheaton Kimble | 358034 | For tissue homogenization |
Triton X-100 | Sigma-Aldrich | X100 | Component of Permeabilization buffer |
Trizma base | Sigma-Aldrich | T6066 | Buffer ingredient for sample preparation |