우리는 학습 과정에 종사하는 성인 (18 세에서 70 세)의 행동 분석을위한 프로토콜을 제시하여 자가 규제 학습 (SRL)을 위해 설계된 작업을 수행합니다. 참가자, 대학 교사 및 학생, 그리고 경험 대학의 성인은 아이 트래킹 장치로 모니터링되었으며 데이터는 데이터 마이닝 기술로 분석되었습니다.
학습 작업에 종사하는 성인의 행동 분석은 성인 교육 분야에서 중요한 과제입니다. 요즘, 지속적인 기술 변화와 과학적 진보의 세계에서, 공식 및 비 공식적인 교육 환경 모두에서 평생 학습과 교육에 대한 필요성이있다. 이러한 과제에 대응하여, 아이트래킹 기술과 데이터 마이닝 기술을 각각 감독(주로 예측) 및 감독되지 않은(클러스터 분석) 학습을 위해 사용자 간에 학습 형태 감지 및/또는 학습 스타일 분류를 위한 방법을 제공합니다. 이 연구에서는, 프로토콜은 다른 나이 (18 에서 69 세)에 이전 지식없이 성인 중 학습 스타일의 연구와 학습 과정 (시작과 끝)에 걸쳐 다른 지점에서 제안된다. 통계적 분산 분석 기법은 학습자 유형과 작업에 대한 이전 지식에 따라 참가자 간의 차이점을 감지할 수 있음을 의미합니다. 마찬가지로, 감독되지 않은 학습 클러스터링 기법을 사용하면 다양한 그룹 참가자들 사이에서 비슷한 형태의 학습에 빛을 던집니다. 이러한 모든 데이터는 정보 처리 체인의 다른 지점에서 각 작업을 발표하기 위해 교사의 개인화 된 제안을 용이하게합니다. 마찬가지로 교사가 각 학생이나 비슷한 특성을 가진 학생 그룹의 학습 요구에 대한 교육 자료를 조정하는 것이 더 쉬울 것입니다.
학습의 행동 분석에 적용된 아이트래킹 방법론
아이트래킹 방법론은 다른 기능적 용도 중에서도 특히 작업 해결 중에 인간의 행동에 대한 연구에 적용됩니다. 이 기술은 학습 작업1을완료하는 동안 모니터링 및 분석을 용이하게합니다. 구체적으로, 학습 과정의 다른 지점에서 학생들의 주의 수준 (시작, 개발, 끝) 다른 과목 (역사, 수학, 과학 등) 눈 추적 기술의 사용으로 공부 할 수있다. 또한 학습 과정을 안내하는 음성으로 비디오 의 사용을 포함하는 작업이 포함된 경우 SRL(자체 규제 학습)이 촉진됩니다. 따라서, SRL(비디오 의 사용을 포함하는) 학습이 어떻게 개발되는지 이해하는 중요한 자원으로 제안된 작업 분석에서 아이트래킹 기술의구현은 2,3,4. 또한 이 조합은 또한 교육 방법(SRL 유무이드) 간의 차이점이 다른 유형의 학생(사전 지식 유무이또는 없는)으로 확인할 수 있음을 의미합니다. 5.반대로, 다중 채널 정보의 프리젠테이션(청각 및 시각적 정보의 동시 프레젠테이션, 구두, 서면 또는 회화 여부)은 상기 변수6에서관련 대 관련 정보의 기록 및 분석을 용이하게 할 수 있다. 멀티미디어 학습 채널에 노출된 사전 지식을 가진 학생은 사전 지식이 거의 없거나 전혀 없는 학생보다 더 효과적으로 배우는 것처럼 보입니다. 주제에 대한 사전 지식이 높은 학생은 텍스트 및 그래픽 정보를 보다 효과적으로 통합합니다7. 이 기능은 이미지9를포함하는 텍스트8을 학습할 때 관찰되었습니다. 아이트래킹 기술은 주의가 집중되는 위치와 얼마나 긴지에 대한 정보를 제공합니다. 이러한 데이터는 작업을 완료하는 동안 해결 프로세스를 간단하게 관찰하는 것보다 보다 정밀한 방법으로 학습 프로세스의 개발에 대한 통찰력을 제공합니다. 또한, 이러한 지표의 분석은 학생이 깊은 또는 피상적 인 학습을 개발하는지 여부에 대한 연구를 용이하게한다. 더욱이, 이러한 데이터와 학습 결과 사이의 관계는 아이트래킹 기술로 얻은 정보의 검증을 용이하게 한다4,10. 사실, SRL과 함께이 기술은 점점 고등 교육및 성인교육11 학습 환경에서 점점 더 사용된다, 모두 규제 및 비 규제 과정에12.
아이 트래킹 기술은 거리, 속도, 가속, 밀도, 분산, 각도 속도, 관심 영역(AOI), AOI순, 고정, 사케이드, 스캔 경로 및 히트 맵 매개 변수의 방문 과 같은 다양한 지표를 제공합니다. 그러나 이러한 데이터의 해석은 복잡하고 감독(회귀, 의사 결정 트리 등) 및 감독되지 않은(k-means 클러스터 기술 등)의 사용이 필요합니다. 13,14 데이터 마이닝 기술. 이러한 메트릭은 시간이 지남에 따라 동일한 주제의 동작을 모니터링하거나 이전 지식과 이전지식(16)을가진 참가자 간의 차이를 분석하여 여러 과목과 동일한작업(15)을가진 성과를 비교하기 위해 적용할 수 있습니다. 최근 연구11,17은 초보 견습생이 자극에 더 이상 고정하는 것으로 나타났습니다 (즉, 유사한 스캔 경로 패턴이 기록되는 동안 더 큰 고정 빈도가 있습니다). 고정의 평균 기간은 초보자보다 전문가에 대한 더 이상이었다. 전문가들은 열지도에서 AOI 내의 시각화 지점에서 볼 수있는 정보 (근위 및 중앙)의 중간 점(근위 및 중앙)에 주의를 환기시켰습니다.
아이트래킹의 지표 해석
최근 연구18 정보 수집자극에 안구 고정의 수와 관련이 있음을 나타냈다. 또 다른 중요한 메트릭은 [10 ms, 100 ms]의 간격으로 고정의 신속하고 갑작스러운 움직임으로 정의되는 saccade입니다. 샤라피 외.(2015)18학생의 정보 코딩 단계에 따라 사케이드 의 수의 차이를 발견했다. 또 다른 관련 매개 변수는연구원(18)이정의한 AOI 내에서 학습 작업의 해결을 위해 참가자가 수행하는 단계의 연대순을 캡처하는 메트릭인 스캔 경로이다. 마찬가지로, 아이트래킹 기술을 사용하여 참가자의 이해 수준을 예측할 수 있으며, 이는 고정 수와 관련이 있는 것으로 보입니다. 최근 연구에 따르면 시선 행동의 가변성은 이미지(위치, 강도, 색상 및 방향), 작업을 수행하기 위한 지침 및 참가자의 정보 처리 유형(학습 스타일)에 의해 결정된다. 이러한 차이는 학생이 다른 AOI19와의상호 작용을 분석하여 감지됩니다. 정량적 20(주파수 분석) 및/또는 질적 또는 동적21(스캔 경로) 기술을 사용하여 다양한 메트릭에서 수집된 데이터를 분석할 수 있습니다. 상기 전 기법은 전통적인 통계기술(주파수 분석, 평균 차이, 분산차 등)으로 분석되며, 후자는 기계 학습 기술로 분석된다(문자열 편집방법(21,22)및 클러스터링17). 이러한 기술의 적용은 피험자의 다양한 특성을 고려하여 클러스터링을 용이하게 합니다. 한 연구17 학생 더 많은 전문가, 구현 되는 공간 및 시간 정보 처리 전략을 더 효과적 발견. 이 연구에서 사용된 측정 매개 변수의 설명 표는 표 1에서아래와 상담할 수 있습니다.
표 1: 사이드, 자파라린, 마티코나 및 벨라스코(2019)에서 적용된 아이트래킹 기술로 얻을 수 있는 대부분의 대표적인 매개변수. 20 이 테이블을 다운로드하려면 여기를 클릭하십시오.
학습 프로세스 연구에 아이트래킹 방법론 적용
5위에 설명된 기술 발전 및 데이터 분석 기법을 사용하면 다양한 정보 처리 단계(작업 개시, 정보 처리 및 작업 해결)에서 문제 해결 중에 학습자의 행동 분석에 더 큰 정밀도를 추가합니다. 그것은 모두 차례로 유사한 특성을 가진 학생들의 그룹을 허용합니다 개별 행동 분석을 용이하게할 것이다24. 마찬가지로 예측 기술(의사 결정 트리, 회귀 기술 등) 25는 학습에 적용할 수 있으며, 고정 횟수와 각 학생의 작업 해결 결과와 관련된 결과를 모두 적용할 수 있습니다. 이 기능은 각 학생이 배우는 방법에 대한 지식과 다른 그룹 내에서 개인화 된 학습 프로그램의 제안에 대한 매우 중요한 진보입니다 (학습 장애 의 유무에 관계없이사람들 26). 따라서,이 기술의 사용은 학습27의개인화 및 최적화의 성취에 기여할 것이다. 평생 학습은 사회의 지식이 끊임없이 발전하고 발전하고 있기 때문에 지속적인 개선의 주기로 이해되어야합니다. 진화 심리학은 정보 처리의 해상도 기술과 효과가 나이가 들면서 감소한다는 것을 나타냅니다. 특히, 성인들 사이에서 는 사케이드 주파수, 진폭 및 눈 의 움직임의 속도가 나이가 들면서 감소하는 것으로 나타났습니다. 또한, 노년기에서는 작업 메모리14의적자와 관련된 시각 장면의 하부 영역에 관심이 집중된다. 그럼에도 불구하고, 노년기에 전두엽 및 전두엽 지역의 활성화가 증가하여 이러한 결핍을 보완하는 것으로 보입니다. 이 측면은 이전 지식의 수준과 주제가 적용 할 수있는 인지 보상 전략을 포함한다. 숙련된 참가자는 자동화된 감독프로세스(28)의적용으로 인해 주의를 보다 효과적으로 관리하기 때문에 보다 효율적으로 학습합니다. 또한, 학습할 정보가 SRL 기술을 통해 전달되는 경우, 전술한 결함은17을완화한다. 이러한 기술의 사용은 시각적 추적 패턴이 사전 지식이없는 과목과 사전 지식이없는 과목 모두에서 매우 유사하다는 것을 의미7.
요약하자면, 고급 학습(eye-tracking) 기술을 사용하여 얻은 SRL에 대한 멀티모달 멀티채널 데이터의 분석은 인지, 메타인지, 동기 부여 과정 간의 상호 작용과 학습 에 미치는영향(29)을이해하는 데 핵심적인 것이다. 학습의 결과와 학습의 차이에 대한 연구는 학습 자료와 지능형 과외 시스템의 설계에 영향을 미치며, 둘 다 학생30에게더 효과적이고 만족스러울 가능성이 있는 개인화된 학습을 가능하게 합니다.
이 연구에서는 두 가지 조사 질문이 있었습니다: (1) 학습 결과와 예술사에서 비전문가 교사 간의 학습 결과와 안구 고정 매개 변수에 상당한 차이가 있을 것인가요 공식 학위(경험대학 – 성인 교육)를 가진 학생들보다 공식 학위를 가진 학생들을 차별화할 수 있습니까? (2) 학습 결과 와 안구 고정 매개 변수와 각 참가자의 클러스터는 참가자의 유형과 일치합니까 (공식 학위를 가진 학생, 비 공식 학위를 가진 학생 (경험대학 – 성인 교육) 및 교사)?
연구 결과는 관련 자극에 평균 고정 기간이 이전 지식을 가진 참가자 중 더 길다는 것을 표시했습니다. 마찬가지로, 이 그룹에 대한 관심의 초점은 정보의 중간 점에 (근위 및 실증)7. 이 연구의 결과는 참가자가 정보를 처리하는 방식에 있는 다름을 밝혔습니다. 또한, 그들의 처리는 항상 초기 그룹화에 연결되지 않았습니다 (경험 학생 대학, 대학 교사 및 대학원 및 석사 학생). ?…
The authors have nothing to disclose.
이 작품은 유럽 위원회의 자금으로 2019-1-ES01-KA204-095615-코디네이터 6 프로젝트 “SmartArt Erasmus+ 성인 교육의 자기 규제 학습”에서 개발되었습니다. 작업 완료 단계의 비디오는 Rut Velasco Sáiz의 사전 통보 된 동의를 했다. 우리는 과제 구현 단계에서 교사와 학생들의 참여를 주셔서 감사합니다.
iViewer XTM | iViewer | ||
SMI Experimenter Center 3.0 | SMI | ||
SMI Be Gaze | SMI |