Presentamos un protocolo para un análisis conductual de adultos (de 18 a 70 años) involucrados en procesos de aprendizaje, realizando tareas diseñadas para el Aprendizaje Autorregulado (SRL). Los participantes, profesores y estudiantes universitarios, y adultos de la Universidad de la Experiencia, fueron monitoreados con dispositivos de seguimiento ocular y los datos fueron analizados con técnicas de minería de datos.
El análisis del comportamiento de los adultos que participan en tareas de aprendizaje es un desafío importante en el campo de la educación de adultos. Hoy en día, en un mundo de continuos cambios tecnológicos y avances científicos, existe una necesidad de aprendizaje y educación a lo largo de toda la vida dentro de los entornos educativos formales y no formales. En respuesta a este desafío, el uso de la tecnología de seguimiento ocular y las técnicas de extracción de datos, respectivamente, para el aprendizaje supervisado (principalmente de predicción) y no supervisado (específicamente el análisis de conglomerados), proporcionan métodos para la detección de formas de aprendizaje entre los usuarios y /o la clasificación de sus estilos de aprendizaje. En este estudio, se propone un protocolo para el estudio de los estilos de aprendizaje entre adultos con y sin conocimientos previos a diferentes edades (18 a 69 años) y en diferentes puntos a lo largo del proceso de aprendizaje (inicio y fin). Las técnicas de análisis estadístico de varianza significan que se pueden detectar diferencias entre los participantes por tipo de alumno y conocimiento previo de la tarea. Del mismo modo, el uso de técnicas de agrupamiento de aprendizaje no supervisadas arroja luz sobre formas similares de aprendizaje entre los participantes en diferentes grupos. Todos estos datos facilitarán propuestas personalizadas del profesor para la presentación de cada tarea en diferentes puntos de la cadena de tratamiento de la información. Asimismo, será más fácil para el profesor adaptar los materiales didácticos a las necesidades de aprendizaje de cada alumno o grupo de alumnos con características similares.
Metodología de seguimiento ocular aplicada al análisis conductual en el aprendizaje
La metodología de seguimiento ocular, entre otros usos funcionales, se aplica al estudio del comportamiento humano, específicamente durante la resolución de tareas. Esta técnica facilita el seguimiento y análisis durante la realización de las tareas de aprendizaje1. En concreto, los niveles de atención de los alumnos en diferentes puntos del proceso de aprendizaje (inicio, desarrollo y fin) en diferentes materias (Historia, Matemáticas, Ciencias, etc.) se pueden estudiar con el uso de la tecnología de seguimiento ocular. Además, si la tarea incluye el uso de vídeos con una voz que guíe el proceso de aprendizaje, se facilita el Aprendizaje Autorregulado (SRL). Por lo tanto, la implementación de la tecnología de seguimiento ocular en el análisis de tareas a las que srl (que incluyen el uso de videos) se propone como un recurso significativo para entender cómo se desarrolla el aprendizaje2,3,4. Esta combinación también significará que las diferencias entre los métodos de instrucción (con o sin SRL, etc.) se pueden comprobar con diferentes tipos de estudiantes (con o sin conocimientos previos, etc.) 5.Por el contrario, la presentación de información multicanal (presentación simultánea de información tanto auditiva como visual, ya sea verbal, escrita o pictórica) puede facilitar tanto el registro como el análisis de información relevante frente a no relevante de las variables antesmencionadas 6. Los estudiantes con conocimientos previos expuestos a canales de aprendizaje multimedia parecen aprender de manera más efectiva que aquellos con poco o ningún conocimiento previo. Los estudiantes con altos niveles de conocimiento previo de la materia integrarán la información textual y gráfica de manera más efectiva7. Esta funcionalidad se ha observado en el aprendizaje de textos8 que incluyen imágenes9. La tecnología de seguimiento ocular ofrece información sobre dónde se centra la atención y durante cuánto tiempo. Estos datos dan una idea del desarrollo de un proceso de aprendizaje de una manera más precisa que a través de la simple observación del proceso de resolución durante la finalización de una tarea. Además, el análisis de estos indicadores facilita el estudio de si el alumno desarrolla un aprendizaje profundo o superficial. Además, la relación entre estos datos y los resultados del aprendizaje facilita la validación de la información obtenida con la tecnología de seguimiento ocular4,10. De hecho, esta técnica junto con el SRL se utilizan cada vez más en la Educación Superior y en la Educación de Adultos11 entornos de aprendizaje, tanto en cursos regulados como no regulados12.
La tecnología de seguimiento ocular ofrece diferentes métricas: distancia, velocidad, aceleración, densidad, dispersión, velocidad angular, transiciones entre Áreas de Interés (AOI), orden secuencial de AOI, visitas en las fijaciones, saccades, ruta de escaneo y parámetros de mapa de calor. Sin embargo, la interpretación de estos datos es compleja y requiere el uso de técnicas de clúster supervisadas (regresión, árboles de decisión, etc.) y no supervisadas (técnicas de clúster k-means, etc.) 13,14 técnicas de minería de datos. Estas métricas pueden ser aplicadas para el seguimiento del comportamiento de un mismo sujeto a lo largo del tiempo o para una comparación entre varios sujetos y su desempeño con la misma tarea15,mediante el análisis de la diferencia entre los participantes con conocimientos previos frente a los no conocimientos previos16. Investigaciones recientes11,17 han revelado que los aprendices novatos se fijan más tiempo en los estímulos (es decir, hay una mayor frecuencia de fijación mientras se registran patrones similares de trayectoria de exploración). La duración media de la fijación fue mayor para los expertos que para los novatos. Los expertos presentaron su foco de atención en los puntos medios de la información (proximal y central), diferencias que también se pueden ver en los puntos de visualización dentro del AOI en los mapas de calor.
Interpretación de métricas en el seguimiento ocular
Estudios recientes18 han indicado que la adquisición de información está relacionada con el número de fijaciones oculares en los estímulos. Otra métrica importante es el saccade, que se define como el movimiento rápido y repentino de una fijación con un intervalo de [10 ms, 100 ms]. Sharafi et al. (2015)18 encontraron diferencias en el número de saccades, dependiendo de la fase de codificación de la información del estudiante. Otro parámetro relevante es el scan-path, una métrica que captura el orden cronológico de los pasos que el participante realiza para la resolución de la tarea de aprendizaje dentro de la AOI definida por el investigador18. Del mismo modo, la tecnología de seguimiento ocular se puede utilizar para predecir el nivel de comprensión del participante, que parece estar relacionado con el número de fijaciones. Estudios recientes han indicado que la variabilidad en el comportamiento de la mirada está determinada por las propiedades de la imagen (posición, intensidad, color y orientación), las instrucciones para realizar la tarea y el tipo de procesamiento de la información (estilo de aprendizaje) del participante. Estas diferencias se detectan analizando la interacción del alumno con los diferentes AOI19. Se pueden utilizar técnicas cuantitativas20 (análisis de frecuencia) y/o cualitativas o dinámicas21 (ruta de escaneo) para analizar los datos recopilados de las diferentes métricas. Las primeras técnicas se analizan con técnicas estadísticas tradicionales (análisis de frecuencia, diferencia de medias, diferencia de varianza, etc.) y las segundas se analizan con técnicas de Machine Learning (distancias euclidianas con métodos de edición de cadenas21,22,y clustering17). La aplicación de estas técnicas facilita el clustering, al considerar diferentes características de los sujetos. Un estudio17 encontró que cuanto más experto es el estudiante, más efectiva es la estrategia de procesamiento de información espacial y temporal que se implementa. Una tabla descriptiva de los parámetros de medición que se utilizaron en este estudio se puede consultar a continuación en la Tabla 1.
Tabla 1: Parámetros más representativos que se pueden obtener con la técnica de eye-tracking, adaptado de Sáiz, Zaparaín, Marticorena y Velasco (2019). 20 Haga clic aquí para descargar esta tabla.
Aplicación de la metodología de seguimiento ocular al estudio del proceso de aprendizaje
El uso de los avances tecnológicos y las técnicas de análisis de datos descritas anteriormente5 agregará una mayor precisión al análisis conductual de los estudiantes durante la resolución de problemas en las diferentes fases del procesamiento de la información (iniciación de tareas, procesamiento de información y resolución de tareas). Todo ello facilitará el análisis conductual individual, lo que a su vez permitirá la agrupación de estudiantes con características similares24. Asimismo, técnicas predictivas (árboles de decisión, técnicas de regresión, etc.) 25 se pueden aplicar al aprendizaje, relacionados tanto con el número de fijaciones como con los resultados de la resolución de tareas de cada estudiante. Esta funcionalidad supone un avance muy importante en el conocimiento de cómo aprende cada alumno y para la propuesta de programas de aprendizaje personalizados dentro de diferentes colectivos (personas con o sin dificultades de aprendizaje26). Por lo tanto, el uso de esta técnica contribuirá al logro de la personalización y optimización del aprendizaje27. El aprendizaje a lo largo de toda la vida debe entenderse como un ciclo de mejora continua, ya que el conocimiento de la sociedad avanza y progresa constantemente. La psicología evolutiva indica que las habilidades de resolución y la efectividad en el procesamiento de la información disminuyen con la edad. Específicamente, la frecuencia del saccade, la amplitud, y la velocidad de los movimientos de ojo entre adultos se han encontrado para disminuir con edad. Además, a edades más avanzadas, la atención se centra en las áreas inferiores de las escenas visuales, lo que se relaciona con los déficits en la memoria de trabajo14. Sin embargo, la activación aumenta en las áreas frontales y prefrontales a una edad más avanzada, lo que parece compensar estos déficits en la resolución de tareas. Este aspecto incluye el nivel de conocimiento previo y las estrategias de compensación cognitiva que el sujeto puede aplicar. Los participantes experimentados aprenden de manera más eficiente, ya que gestionan la atención de manera más efectiva, debido a la aplicación de procesos de supervisiónautomatizados 28. Además, si la información a aprender se imparte a través de técnicas de SRL, se mitigan las deficiencias antes mencionadas17. El uso de tales técnicas significa que los patrones de seguimiento visual son muy similares, tanto en sujetos sin conocimientos previos como en sujetos con conocimientos previos7.
En resumen, el análisis de los datos multimodal-multicanal sobre SRL obtenidos con el uso de tecnologías de aprendizaje avanzado (eye-tracking) es clave para comprender la interacción entre los procesos cognitivos, metacognitivos y motivacionales, y su impacto en el aprendizaje29. Los resultados y el estudio de las diferencias en el aprendizaje tienen implicaciones para el diseño de materiales de aprendizaje y sistemas de tutoría inteligentes, los cuales permitirán un aprendizaje personalizado que probablemente sea más efectivo y satisfactorio para el estudiante30.
En esta investigación, se hicieron dos preguntas de investigación: (1) ¿Habrá diferencias significativas en los resultados de aprendizaje y en los parámetros de fijación ocular entre los estudiantes y los profesores expertos versus no expertos en Historia del Arte diferenciando a los estudiantes con títulos oficiales de los estudiantes con títulos no oficiales (University of Experience – Educación de adultos)? y (2) ¿Coincidirán los grupos de cada participante con resultados de aprendizaje y parámetros de fijación ocular con el tipo de participantes (estudiantes con títulos oficiales, estudiantes con títulos no oficiales (Universidad de la Experiencia – Educación de Adultos) y profesores)?
Los resultados de la investigación indicaron que la duración media de la fijación en los estímulos relevantes fue más larga entre los participantes con conocimientos previos. Asimismo, el foco de atención en este grupo está en los puntos medios de información (proximal y distal)7. Los resultados de este estudio han revelado diferencias en la forma en que los participantes procesaron la información. Además, su procesamiento no siempre estuvo vinculado a la agrupación inicial (Estudiantes…
The authors have nothing to disclose.
El trabajo se ha desarrollado dentro del Proyecto “Aprendizaje Autorregulado en SmartArt Erasmus+ Educación de Adultos” 2019-1-ES01-KA204-095615-Coordinador 6, financiado por la Comisión Europea. El video de la fase de finalización de la tarea contó con el consentimiento fundamentado previo de Rut Velasco Sáiz. Agradecemos la participación de profesores y estudiantes en la fase de implementación de tareas.
iViewer XTM | iViewer | ||
SMI Experimenter Center 3.0 | SMI | ||
SMI Be Gaze | SMI |