Summary

急性小鼠脑切片研究自发海马网络活动

Published: August 28, 2020
doi:

Summary

此协议描述了从表现出自发锐波波纹活动的小鼠身上制作水平海马-内皮层 (HEC) 切片的准备工作。切片在简化的接口夹腔中孵育,并在水下条件下用快速流动的人工脑脊液进行录音,以促进组织氧合和网络水平活动的自发出现。

Abstract

急性啮齿动物脑切片提供了一种可伸缩的实验方法,利用电生理学、显微镜和药理学,通过单细胞分辨率深入了解神经回路的组织和功能。然而, 体外 实验设计的一个主要考虑因素是,不同的切片制剂在多大程度上回顾了 在体内 观察到的神经活动的自然形态。在完好无损的大脑中,海马网络产生反映动物行为状态的高度同步的种群活动,在清醒的完善状态或非REM睡眠期间发生的剧烈波纹复合物(SWR)就是例证。SWR 和其他形式的网络活动可以在适当的条件下在孤立的海马片中自发出现。为了将强大的脑切片工具包应用于海马网络活动的调查,有必要采用一种优化海马网络内组织健康和保持功能连接的方法。小鼠通过心电图注入冷蔗糖为基础的人工脑脊液。含有海马的水平切片被切成450μm的厚度,以保持突触连接。切片在接口式腔室中恢复,并转移到水下腔室进行录制。录音室设计用于以高流速对人造脑脊液进行双表面超级输液,以改善切片的氧合。此协议产生适合体 复杂和自发的网络活动研究的健康组织。

Introduction

体外活海马片 电生理测量是一种强大的实验方法,具有诸多优点。实验者可以使用显微镜、微操纵器和记录系统直接可视化和收集组织中单个神经元的测量结果。组织切片也非常容易用于光刺激或药物输送,用于光遗传学、化学遗传学或药理学实验。

海马网络在体内产生高度同步的人动,可见于细胞外局部场的振荡潜力1 , 2 , 3 , 4 , 5 。脑切片方法已被利用来深入了解这些神经元网络振荡背后的细胞和回路机制。迈尔等人的基础工作表明,尖锐的波纹复合物(SWR)可以自发地出现在腹海马6,7的切片中。来自多个研究者的后续研究已经逐渐阐明了SWR的许多方面,包括神经调节器在调节海马8、9、10的网络状态方面的作用,以及推动神经元合奏体内活动期间体外重新激活的突触机制。脑切片实验也提供了对伽马范围振荡(30-100赫兹)的洞察,这是一种独特的海马网络状态,被认为支持内存编码和回忆12,13。最后,认识到海马和相关结构在时间叶癫痫病理生理学中的核心作用14、15,研究人员利用海马切片制剂研究癫痫活性的生成和繁殖。Carter等人证明,从慢性癫痫动物身上制备的海马-内皮层组合片可以在体外16中自发产生癫痫放电。随后,Karlécai等人利用经过改良的人工脑脊液(ACSF)改变离子浓度(降低Mg2+或升高K+)或添加药物(4AP或加巴津)17,探索了海马片中癫痫放电的机制。

研究者已经开发出许多海马切片方法,这些方法在关键方面有所不同:(1) 切片中海马的区域(多孔、中间或腹腔):(二)内皮层等外皮组织的存在或者不存在的:(3) 用于切割切片(冠状、下垂、水平或倾斜)的方向:(4) 切片后组织维持的条件(完全浸入ACSF或保存在ACSF的接口和加湿,富含碳水化合物的空气)。

使用哪种切片方法的选择应由实验目标决定。例如,在水下条件下保存的背海马的横向或日冕切片已非常有效地用于研究海马内电路和突触可塑性18、19、20。然而,这种准备不会像21、22、23号海马的叶片那样自发地产生网络振荡。虽然从多佛和心室海马24的横向切片中,破伤风刺激可以诱发持续的SWR活动状态,但自发性SWR更容易在腹腔切片7、25中观察到。

在体内和体外26进行的研究支持了多骨和心室海马之间固有的生理和解剖学区别。大鼠的录音显示,整个脊椎和中海马的节奏非常连贯,但腹腔区域与海马27号其余部分之间的连贯性较差。体内的 SWR 很容易多拉尔和中海马之间传播,而源自腹海马体的 SWR 通常仍然是本地的 28。来自位于背心和中海马体的CA3金字塔神经元的关联投影沿着海马的纵轴进行长距离投射。来自腹地的CA3预测仍然相对局部,因此在切片过程中不太可能切断。因此,心室切片可以更好地保存生成人口同步所需的经常性网络。室室切片在体外产生自发网络活动的倾向也可能反映金字塔神经元的内在兴奋性更高,或与更多的背部区域31相比,心室海马体中较弱的GABAErgic抑制。事实上,腹海马片更容易受到癫痫活性32,33。因此,许多关于自发生理8、9、11、24或病理16、34、35、36网络振荡的研究传统上都采用水平切片方法,有时在前脑方向有轻微的角度,产生与心室海马横向平面平行的组织切片。

网络连接不可避免地受到切片过程的影响,因为切片中的许多单元格将被切断。应考虑切片和制备中保留的组织的角度和厚度,以优化感兴趣的电路中的连接性。许多研究利用水平组合海马-内皮层切片(HEC)来探索两种结构在生理或病理网络振荡背景下的相互作用。Roth等人从海马的CA1子场和中腹皮层的V层进行了双重录音,以证明通过 HEC 切片37传播 SWR 活动。许多有关癫痫活性的研究都利用 HEC 切片制剂来研究癫痫菌体如何通过皮质皮质细胞网络 16、35、36、38 传播。需要注意的是,保存完好的皮质皮质环不是自发 SWR、癫痫放电或伽马振荡的先决条件:网络振荡可以在圆周或心室海马的横向切片中产生,没有附加的寄生虫组织21,22,23,25,39,40,41。 海马片中自发生成网络振荡的一个更重要的因素可能是每片的厚度,因为较厚的切片(400-550μm)将保留CA2/CA3复发网络21、22、25的更多连接。

虽然角水平 HEC 切片(在前部方向的切口角约为 12°角)已用于研究皮质希波坎帕尔环 11、16、34、35、42 的功能连接,但这种角度准备对于自发网络活动43、44、45并不需要。但是,使用倾斜的切片平面确实允许研究者选择性地制作切片,以最好地保存腹腔或中海马体的横向偏斜,具体取决于是否应用向下或向上的角度(图 1)。这种方法在概念上与2002年帕帕西奥多罗普洛斯等人所使用的方法相似,他们免费解剖了每个海马,然后使用组织斩波器沿着整个正交轴21创建横向切片。根据上述腹腔和正向中间海马之间的功能差异,研究人员在设计实验或解释结果时应考虑切片的解剖起源。在切片过程中使用琼脂坡道是一种从中间或心室海马体中优先生产切片的简单方法。

海马切片可以保存在水下室(组织完全浸入ACSF),或界面风格的腔室(如奥斯陆或哈斯室,切片只覆盖由流动介质薄膜覆盖)。接口维护可增强组织的氧化,促进神经元存活,并允许持续高水平的内分活动。传统上,水下记录条件使用较慢的ACSF流速,不能提供足够的组织氧合,以稳定地表达网络水平振荡。在水下海马片中,只观察到卡巴乔尔引起的伽马振荡,瞬时只有46,47,而它们可以稳定地维持在界面记录室10,48,49。因此,许多关于体外复杂自发活动的研究都依赖于界面记录室来研究剧烈波纹复合体6、7、8、9、10、25、37、伽马振10、13和癫痫活性16、38、45、47。

在水下风格的录音室中,浸入式显微镜目标可用于可视化单个细胞,并选择性地瞄准健康外观的细胞进行录制。水下制剂还允许对细胞环境进行精细控制,因为潜水有助于药物或其他化合物快速扩散到组织。因此,在水下条件下保持稳定的网络振荡的修改方法是一种强有力的实验方法。Höjos等人的工作就是例证,海马切片在简化的界面式支架室中恢复数小时,然后转移到具有高流量ACSF(约6 mL/min)的经过改造的水下录音室,以增强对组织12、48、49的氧气供应。在这种情况下,在水下录音室中可以保持高水平的自相残杀活动和稳定的自发网络振荡。这种修改的方法允许调查人员执行视觉引导的全细胞贴片夹子录音,并描述形态识别的细胞类型对卡巴乔尔诱导的伽马振荡12的贡献。SWR也可以自发地出现在水下海马片中,其快速流速为ACSF 11、48、49。迈尔等人证明,海马片在转移到水下录音室之前在接口室中恢复,可靠地表现出自发的SWR,而在转移到水下录音室之前在烧杯中恢复的片状物则显示出较小的引起场反应,自发突触电流水平较低,而且很少显示自发的SWR43。施林洛夫等人利用这种改进的方法,展示了帕瓦尔布明表达篮细胞在产生自发SWR44中的作用。

以下协议提出了一种切片方法,通过这种方法,可以在接口条件下恢复水平海马切片中的自发活跃神经元,随后保存在适合药理学或光遗传学操作和视觉引导记录的水下录音室中。

Protocol

这里描述的所有方法都得到了哥伦比亚大学机构动物护理和使用委员会(AC-AAU9451)的批准。 1. 准备解决方案 准备蔗糖切割溶液,用于切片,如 表 1中所述。注:在准备了1升蔗糖溶液后,在冰盘中冷冻少量(约100-200毫升)。这些冷冻蔗糖冰块将被混合成冰浆(见步骤4.3)。 准备人工脑脊液(ACSF)进行记录,如 表2所述…

Representative Results

此处介绍的是本协议中描述的 HEC 切片中的代表性录音。在接口保持室(图1C)中恢复后,切片被单独转移到水下录音室(图2B)。录音室使用长眠泵(图2A)提供碳水化合物饱和的ACSF。泵首先将ACSF从手持烧杯中拉入加热储层。碳水化合物线被放置在手持烧杯和加热储层中,以提供介质的连续氧合。脉动阻尼器由一系列充满空气的…

Discussion

这个切片协议有几个步骤,旨在促进组织健康,有利于自发的自然网络活动的出现:小鼠在心电图上注入冰镇蔗糖切割溶液:水平内皮质 (HEC) 切片的厚度为 450μm,从中间或腹海马;切片在加热的ACSF和加湿,富含碳水化合物的空气的界面恢复:在录制过程中,切片被超级注入ACSF加热到32°C,并以快速流速交付,双表面超级输液在水下录音室。

切片健康对于 体外网络?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者要感谢史蒂夫·西格尔鲍姆的支持。资金由5R01NS106983-02以及1 F31 NS113466-01提供。

Materials

3D printer Lulzbot LulzBot TAZ 6
Acute brain slice incubation holder NIH 3D Print Exchange 3DPX-001623 Designed by ChiaMing Lee, available at https://3dprint.nih.gov/discover/3dpx-001623
Adenosine 5′-triphosphate magnesium salt Sigma Aldrich A9187-500MG
Ag-Cl ground pellets Warner 64-1309, (E205)
agar Becton, Dickinson 214530-500g
ascorbic acid Alfa Aesar 36237
beaker (250 mL) Kimax 14000-250
beaker (400 mL) Kimax 14000-400
biocytin Sigma Aldrich B4261
blender Oster BRLY07-B00-NP0
Bonn scissors, small becton, Dickinson 14184-09
borosilicate glass capillaries with filament (O.D. 1.5 mm, I.D. 0.86 mm, length 10 cm) Sutter Instruments BF150-86-10HP Fire polished capillaries are preferable.
calcium chloride solution (1 M) G-Biosciences R040
camera Olympus OLY-150
compressed carbogen gas (95% oxygen / 5% carbon dioxide) Airgas X02OX95C2003102
compressed oxygen Airgas OX 200
constant voltage isolated stimulator Digitimer Ltd. DS2A-Mk.II
coverslips (22×50 mm) VWR 16004-314
cyanoacrylate adhesive Krazy Glue KG925 Ideally use the brush-on form for precision
data acquisition software Axograph N/A Any equivalent software (e.g. pClamp) would work.
Dell Precision T1500 Tower Workstation Desktop Dell N/A Catalog number will depend on specific computer – any computer will work as long as it can run electrophysiology acquisition software.
Digidata 1440A Molecular Devices 1-2950-0367
digital timer VWR 62344-641 4-channel Traceable timer
disposable absorbant pads VWR 56616-018
dissector scissors Fine Science Tools 14082-09
double-edge razor blades Personna BP9020
dual automatic temperature controller Warner Instrument Corporation TC-344B
dual-surface or laminar-flow optimized recording chamber N/A N/A The chamber presented in this protocol is custom made. A commercial equivalent would be the RC-27L from Warner Instruments.
equipment rack Automate Scientific FR-EQ70" A rack is not strictly necessary but useful for organizing electrophysiology
Ethylene glycol-bis(2-aminoethyiether)- N,N,N',N'-teetraacetic acid (EGTA) Sigma Aldrich 324626-25GM
filter paper Whatman 1004 070
fine scale Mettler Toledo XS204DR
Flaming/Brown micropipette puller Sutter Instruments P-97
glass petri dish (100 x 15 mm) Corning 3160-101
glucose Fisher Scientific D16-1
Guanosine 5′-triphosphate sodium salt hydrate Sigma Aldrich G8877-250MG
ice buckets Sigma Aldrich BAM168072002-1EA
isoflurane vaporizer General Anesthetic Services Tec 3
lab tape Fisher Scientific 15-901-10R
lens paper Fisher Scientific 11-996
light source Olympus TH4-100
magnesium chloride solution (1 M) Quality Biological 351-033-721EA
magnetic stir bars Fisher Scientific 14-513-56 Catalog number will be dependent on the size of the stir bar.
micromanipulator Luigs & Neumann SM-5
micromanipulator (manual) Scientifica LBM-2000-00
microscope Olympus BX51WI
microspatula Fine Science Tools 10089-11
monitor Dell 2007FPb
MultiClamp 700B Microelectrode Amplifier Molecular Devices MULTICLAMP 700B The MultiClamp 700B should include headstages, pipette holders, and a model cell.
N-(2-Hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid), (HEPES) Sigma Aldrich H3375-25G
needle (20 gauge, 1.5 in length) Becton, Dickinson 305176
nylon filament YLI Wonder Invisible Thread 212-15-004 size 0.004. This cat. # is from Amazon.com
nylon mesh Warner Instruments Corporation 64-0198
perstaltic pump Harvard Apparatus 70-2027
Phosphocreatine di(tris) salt Sigma Aldrich P1937-1G
pipette holders Molecular Devices 1-HL-U
platinum wire World Precision PT0203
polylactic acid (PLA) filament Ultimaker RAL 9010
potassium chloride Sigma Aldrich P3911-500G
potassium gluconate Sigma Aldrich 1550001-200MG
potassium hydroxide Sigma Aldrich 60377-1KG
razor blades VWR 55411-050
roller clamp World Precision Instruments 14041
scale Mettler Toledo PM2000
scalpel handle Fine Science Tools 10004-13
slice harp Warner SHD-26GH/2
sodium bicarbonate Fisher Chemical S233-500
sodium chloride Sigma Aldrich S9888-1KG
sodium phosphate monobasic anhydrous Fisher Chemical S369-500
sodium pyruvate Fisher Chemical BP356-100
spatula VWR 82027-520
spatula/spoon, large VWR 470149-442
sterile scalpel blades Feather 72044-10
stirrer / hot plate Corning 6795-220
stopcock valves, 1-way World Precision Instruments 14054
stopcock valves, 3-way World Precision Instruments 14036
sucrose Acros Organics AC177142500
support for swivel clamps Fisher Scientific 14-679Q
surgical scissors, sharp/blunt Fine Science Tools 14001-12
syringe (1 mL) Becton, Dickinson 309659
syringe (60 mL with Luer-Lok tip) Becton, Dickinson 309653
three-pronged clamp Fisher Scientific 05-769-8Q
tissue forceps, large Fine Science Tools 11021-15
tissue forceps, small Fine Science Tools 11023-10
transfer pipettes Fisher Scientific 13-711-7M
tubing Tygon E-3603 ID 1/16 inch, OD 3/16 inch
tubing Tygon R-3603 ID 1/8 inch, OD 1/4 inch
vacuum grease Dow Corning 14-635-5D
vibrating blade microtome Leica VT 1200S
vibration-dampening table with faraday cage Micro-G / TMC-ametek 2536-516-4-30PE
volumetric flask (1 L) Kimax KIM-28014-1000
volumetric flask (2 L) PYREX 65640-2000
warm water bath VWR 1209
 

References

  1. Buzsáki, G., Lai-Wo, S., Vanderwolf, C. H. Cellular bases of hippocampal EEG in the behaving rat. Brain Research Reviews. 6, 139-171 (1983).
  2. Buzsáki, G. Hippocampal sharp waves: Their origin and significance. Brain Research. 398, 242-253 (1986).
  3. Buzsáki, G., Horváth, Z., Urioste, R., Hetke, J., Wise, K. High-frequency network oscillation in the hippocampus. Science. 256, 1025-1027 (1992).
  4. Buzsáki, G., Anastassiou, C. A., Koch, C. The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience. 13, 407-420 (2012).
  5. Buzsáki, G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus. 25, 1073 (2015).
  6. Maier, N., et al. Reduction of high-frequency network oscillations (ripples) and pathological network discharges in hippocampal slices from connexin 36-deficient mice. Journal of Physiology. 541, 521-528 (2002).
  7. Maier, N., Nimmrich, V., Draguhn, A. Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices. Journal of Physiology. 550, 873-887 (2003).
  8. ul Haq, R., et al. Adrenergic modulation of sharp wave-ripple activity in rat hippocampal slices. Hippocampus. 22, 516-533 (2012).
  9. ul Haq, R., et al. Serotonin dependent masking of hippocampal sharp wave ripples. Neuropharmacology. 101, 188-203 (2016).
  10. Maier, P., Kaiser, M. E., Grinevich, V., Draguhn, A., Both, M. Differential effects of oxytocin on mouse hippocampal oscillations in vitro. European Journal of Neuroscience. 44, 2885-2898 (2016).
  11. Mizunuma, M., et al. Unbalanced excitability underlies offline reactivation of behaviorally activated neurons. Nature Neuroscience. 17, 503-505 (2014).
  12. Hájos, N., et al. Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro. Journal of Neuroscience. 24, 9127-9137 (2004).
  13. Geschwill, P., et al. Synchronicity of excitatory inputs drives hippocampal networks to distinct oscillatory patterns. Hippocampus. , (2020).
  14. Rutecki, P. A., Grossmann, R. G., Armstrong, D., Irish-Loewen, S. Electrophysiological connections between the hippocampus and entorhinal cortex in patients with complex partial seizures. Journal of Neurosurgery. 70, 667-675 (1989).
  15. Lothman, E. W., Bertram, E. H., Stringer, J. L. Functional anatomy of hippocampal seizures. Progress in Neurobiology. 37, 1-82 (1991).
  16. Carter, D. S., Deshpande, L. S., Rafiq, A., Sombati, S., Delorenzo, R. J. Characterization of spontaneous recurrent epileptiform discharges in hippocampal – cortical slices prepared from chronic epileptic animals. Seizure: European Journal of Epilepsy. 20, 218-224 (2011).
  17. Karlócai, M. R., et al. Physiological sharp wave-ripples and interictal events in vitro: What’s the difference. Brain. 137, 463-485 (2014).
  18. Leroy, F., et al. Input-timing-dependent plasticity in the hippocampal CA2 region and its potential role in social memory. Neuron. 95, 1089-1102 (2017).
  19. Sun, Q., et al. Proximodistal heterogeneity of hippocampal CA3 pyramidal neuron intrinsic properties, connectivity, and reactivation during memory recall. Neuron. 95, 656-672 (2017).
  20. Masurkar, A. V., et al. Medial and lateral entorhinal cortex differentially excite deep versus superficial CA1 pyramidal neurons. Cell Reports. 18, 1-13 (2017).
  21. Papatheodoropoulos, C., Kostopoulos, G. Spontaneous, low frequency (∼2-3 Hz) field activity generated in rat ventral hippocampal slices perfused with normal medium. Brain Research Bulletin. 57, 187-193 (2002).
  22. Papatheodoropoulos, C., Kostopoulos, G. Spontaneous GABAA-dependent synchronous periodic activity in adult rat ventral hippocampal slices. Neuroscience Letters. 319, 17-20 (2002).
  23. Kubota, D., Colgin, L. L., Casale, M., Brucher, F. A., Lynch, G. Endogenous waves in hippocampal slices. Journal of Neurophysiology. 89, 81-89 (2003).
  24. Behrens, C. J., Van Den Boom, L. P., De Hoz, L., Friedman, A., Heinemann, U. Induction of sharp wave – complexes in vitro and reorganization of hippocampal networks. Nature Neuroscience. 8, 1560-1567 (2005).
  25. Kouvaros, S., Papatheodoropoulos, C. Prominent differences in sharp waves, ripples and complex spike bursts between the dorsal and the ventral rat hippocampus. 신경과학. 352, 131-143 (2017).
  26. Strange, B. A., Witter, M. P., Lein, E. S., Moser, E. I. Functional organization of the hippocampal longitudinal axis. Nature Reviews Neuroscience. 15, 655-669 (2014).
  27. Patel, J., Fujisawa, S., Berényi, A., Royer, S., Buzsáki, G. Traveling Theta Waves along the Entire Septotemporal Axis of the Hippocampus. Neuron. 75, 410-417 (2012).
  28. Patel, J., Schomburg, E. W., Berényi, A., Fujisawa, S., Buzsáki, G. Local generation and propagation of ripples along the septotemporal axis of the hippocampus. Journal of Neuroscience. 33, 17029-17041 (2013).
  29. Fricke, R., Cowan, W. M. An autoradiographic study of the commissural and ipsilateral hippocampo-dentate projections in the adult rat. Journal of Comparative Neurology. 181, 253-269 (1978).
  30. Ishizuka, N. O. R., Weber, J., Amaral, D. G. Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. The Journal of Comparative Neurology. 623, 580-623 (1990).
  31. Papatheodoropoulos, C. Electrophysiological evidence for long-axis intrinsic diversification of the hippocampus. Frontiers in Bioscience – Landmark. 23, 109-145 (2018).
  32. Gilbert, M., Racine, R. J., Smith, G. K. Epileptiform burst responses in ventral vs dorsal hippocampal slices. Brain Research. 361, 389-391 (1985).
  33. Papatheodoropoulos, C., Moschovos, C., Kostopoulos, G. Greater contribution of N-methyl-D-aspartic acid receptors in ventral compared to dorsal hippocampal slices in the expression and long-term maintenance of epileptiform activity. 신경과학. 135, 765-779 (2005).
  34. Jones, R. S. G., Heinemann, U. Synaptic and intrinsic responses of medial entorhinal cortical cells in normal and magnesium-free medium in vitro. Journal of Neurophysiology. 59, (1988).
  35. Rafiq, A., Delorenzo, R. J., Coulter, D. A. Generation and propagation of epileptiform discharges in a combined entorhinal cortex / hippocampal slice. Journal of Neurophysiology. 70, 1962-1974 (1993).
  36. Stoop, R., Pralong, E. Functional connections and epileptic spread between hippocampus, entorhinal cortex and amygdala in a modified horizontal slice preparation of the rat brain. European Journal of Neuroscience. 12, 3651-3663 (2000).
  37. Roth, F. C., Beyer, K. M., Both, M., Draguhn, A., Egorov, A. V. Downstream effects of hippocampal sharp wave ripple oscillations on medial entorhinal cortex layer V neurons in vitro. Hippocampus. 26, 1493-1508 (2016).
  38. Bertsche, A., Bruehl, C., Pietz, J., Draguhn, A. Region- and pattern-specific effects of glutamate uptake blockers on epileptiform activity in rat brain slices. Epilepsy Research. 88, 118-126 (2010).
  39. Wu, C., Shen, H., Luk, W. P., Zhang, L. A fundamental oscillatory state of isolated rodent hippocampus. Journal of Physiology. 540, 509-527 (2002).
  40. Colgin, L. L., Jia, Y., Sabatier, J. M., Lynch, G. Blockade of NMDA receptors enhances spontaneous sharp waves in rat hippocampal slices. Neuroscience Letters. 385, 46-51 (2005).
  41. Ellender, T. J., Nissen, W., Colgin, L. L., Mann, E. O., Paulsen, O. Priming of hippocampal population bursts by individual perisomatic-targeting interneurons. The Journal of Neuroscience. 30, 5979-5991 (2010).
  42. Xiong, G., Metheny, H., Johnson, B. N., Cohen, A. S. A. Comparison of different slicing planes in preservation of major hippocampal pathway fibers in the mouse. Frontiers in Neuroanatomy. 11, 1-17 (2017).
  43. Maier, N., Morris, G., Johenning, F. W., Schmitz, D. An approach for reliably investigating hippocampal sharp wave-ripples in vitro. PLoS One. 4, 6925 (2009).
  44. Schlingloff, D., Kali, S., Freund, T. F., Hajos, N., Gulyas, A. I. Mechanisms of sharp wave initiation and ripple generation. Journal of Neuroscience. 34, 11385-11398 (2014).
  45. McCloskey, D. P., Scharfman, H. E. Progressive, potassium-sensitive epileptiform activity in hippocampal area CA3 of pilocarpine-treated rats with recurrent seizures. Epilepsy Research. 97, 92-102 (2011).
  46. McMahon, L. L., Williams, J. H., Kauer, J. A. Functionally distinct groups of interneurons identified during rhythmic carbachol oscillations in hippocampus in vitro. Journal of Neuroscience. 18, 5640-5651 (1998).
  47. Pöschel, B., Heinemann, U., Draguhn, A. High frequency oscillations in the dentate gyrus of rat hippocampal slices induced by tetanic stimulation. Brain Research. 959, 320-327 (2003).
  48. Hájos, N., et al. Maintaining network activity in submerged hippocampal slices: importance of oxygen supply. European Journal of Neuroscience. 29, 319-327 (2009).
  49. Hájos, N., Mody, I. Establishing a physiological environment for visualized in vitro brain slice recordings by increasing oxygen supply and modifying aCSF content. Journal of Neuroscience Methods. 183, 107-113 (2009).
  50. Dengler, C. G., Yue, C., Takano, H., Coulter, D. A. Massively augmented hippocampal dentate granule cell activation accompanies epilepsy development. Nature Publishing Group. , 1-17 (2017).
  51. Ting, J. T., et al. Preparation of acute brain slices using an optimized N -methyl-D-glucamine protective recovery method. Journal of Visualized Experiments. 132, 1-13 (2018).
  52. Westerhof, N., Lankhaar, J. W., Westerhof, B. E. The arterial windkessel. Medical and Biological Engineering and Computing. 47, 131-141 (2009).
  53. Shi, W. X., Bunney, B. S. A small volume chamber for electrical recording from submerged brain slices and a pulse-free medium supply system using a peristalic pump. Journal of Neuroscience Methods. 35, 235-240 (1990).

Play Video

Cite This Article
Whitebirch, A. C. Acute Mouse Brain Slicing to Investigate Spontaneous Hippocampal Network Activity. J. Vis. Exp. (162), e61704, doi:10.3791/61704 (2020).

View Video