Here, we present a method for recording light-evoked electrical responses of the retinal pigment epithelium (RPE) in mice using a technique known as DC-ERGs first described by Marmorstein, Peachey, and colleagues in the early 2000s.
The retinal pigment epithelium (RPE) is a specialized monolayer of cells strategically located between the retina and the choriocapillaris that maintain the overall health and structural integrity of the photoreceptors. The RPE is polarized, exhibiting apically and basally located receptors or channels, and performs vectoral transport of water, ions, metabolites, and secretes several cytokines.
In vivo noninvasive measurements of RPE function can be made using direct-coupled ERGs (DC-ERGs). The methodology behind the DC-ERG was pioneered by Marmorstein, Peachey, and colleagues using a custom-built stimulation recording system and later demonstrated using a commercially available system. The DC-ERG technique uses glass capillaries filled with Hank’s buffered salt solution (HBSS) to measure the slower electrical responses of the RPE elicited from light-evoked concentration changes in the subretinal space due to photoreceptor activity. The prolonged light stimulus and length of the DC-ERG recording make it vulnerable to drift and noise resulting in a low yield of useable recordings. Here, we present a fast, reliable method for improving the stability of the recordings while reducing noise by using vacuum pressure to reduce/eliminate bubbles that result from outgassing of the HBSS and electrode holder. Additionally, power line artifacts are attenuated using a voltage regulator/power conditioner. We include the necessary light stimulation protocols for a commercially available ERG system as well as scripts for analysis of the DC-ERG components: c-wave, fast oscillation, light peak, and off response. Due to the improved ease of recordings and rapid analysis workflow, this simplified protocol is particularly useful in measuring age-related changes in RPE function, disease progression, and in the assessment of pharmacological intervention.
The retinal pigment epithelium (RPE) is a monolayer of specialized cells that line the posterior segment of the eye and exert critical functions to maintain retinal homeostasis1. The RPE supports photoreceptors by regenerating their photon-capturing visual pigment in a process called the visual cycle2, by participating in the diurnal phagocytosis of shed outer segment tips3, and in the transport of nutrients and metabolic products between photoreceptors and the choriocapillaris4,5. Abnormalities in RPE function underlie numerous human retinal diseases, such as age-related macular degeneration6, Leber’s congenital amaurosis7,8 and Best vitelliform macular dystrophy9. As donor eye tissues are often difficult to obtain solely for research purposes, animal models with genetic modifications can provide an alternative way to study the development of retinal diseases10,11. Additionally, the emergence and application of CRISPR cas9 technology now permits genomic introductions (knock-in) or deletions (knock-out) in a simple, one-step process surpassing limitations of prior gene targeting technologies12. The boom in the availability of new mouse models13 necessitates a more efficient recording protocol to non-invasively evaluate RPE function.
Measurement of the light-evoked electrical responses of the RPE can be achieved using a direct-coupled electroretinogram (DC-ERG) technique. When used in combination with conventional ERG recordings that measure the photoreceptor (a-wave) and bipolar (b-wave) cell responses14, the DC-ERG can define how the response properties of the RPE change with retinal degeneration15,16,17 or whether RPE dysfunction precedes photoreceptor loss. This protocol describes a method adapted from the work of Marmorstein, Peachey, and colleagues who first developed the DC-ERG technique16,18,19,20 and improves upon the reproducibility and ease of use.
The DC-ERG recording is difficult to perform because of the long acquisition time (9 min) during which any interruption or introduction of noise can complicate the interpretation of the data. The advantage of this new method is that the baselines reach steady state within a shorter amount of time reducing the likelihood that the animal will awaken prematurely from anesthesia and is less prone to bubble formation in the capillary electrodes.
This protocol follows the animal care guidelines outlined in the animal study protocol approved by the Animal Care and Use Committee of the National Eye Institute.
1. Importing light stimulation protocols for DC-ERG
NOTE: Follow the directions below to import the light stimulation protocols for the DC-ERG into the ERG system software (Table of Materials). The protocol consists of a 0.5 min pre-stimulus interval, followed by a step of light (10 cd/m2) for 7 min, and ending with a 1.5 min post-stimulus interval. The light intensity of 10 cd/m2 (1 log10 cd/m2) was selected since it evokes approximately half the maximal response for all the components of the DC-ERG in WT mice18,21. The c-wave and fast oscillation are of particular interest as the origins of these electrical responses are well characterized and can be isolated and studied further in vitro RPE models (e.g., iPSC-RPE). The application of other light intensities can extract additional information, for instance, the off response undergoes a reversal of polarity at brighter light stimuli and may show differences at the intensity at which this reversal takes place. The user is free to change the light intensity settings at their discretion.
2. Capillary electrode preparation
3. Filling capillary electrodes
4. Test electrodes
5. Mouse and electrode positioning
6. DC-ERG recording
7. Data export
8. Data analysis
Figure 2 is a sample dataset from miR-204 ko/ko cre/+ (conditional KO) and wild type (WT) mice. MiR-204 ko/ko cre/+ are mice with a conditional knockout of microRNA 204 in the retinal pigment epithelium. These mice are generated by crossing floxed miR-204 mice (produced by NEIGEF)22 with VMD2-CRE mice23. MiR-204 is highly expressed in the RPE where it regulates the expression of proteins critical for epithelial function that maintain tight junction integrity (e.g., claudins), the maintenance of potassium homeostasis through the expression of Kir 7.1 potassium channels, and the expression of several visual cycle genes (e.g., LRAT, RPE65)24.
Since abnormal RPE morphology was reported in several RPE-specific Cre expressing mouse lines25, we monitored for normal RPE morphology in Cre expressing mice with the WT phenotype. The structural and functional abnormalities of the miR-204 ko/ko cre+ (conditional KO) mouse retina resemble the features found in miR-204 null mice15 characterized by hyper autofluorescence (lipofuscin-like deposits) and increased microglia localized to the RPE apical surface. In null mice these changes were accompanied with decreased light-evoked electrical responses of the RPE, with minimal alteration to photoreceptor responses (assessed by retinal ERG). Thus, perturbation of miR-204 expression in miR-204 ko/ko cre/+ mice is also expected to alter the electrical response of the RPE.
In the example presented, a mouse is placed on the heated platform and the electrodes are positioned appropriately prior to lowering the dome. Impedance and drift are checked as previously described using the bath solution. Representative “negative” results are shown in Figure 2A. In Figure 2A (top panel), the trace suffers from minute bubbles in the electrode that increase the peak-to-peak noise in the trace (shaded in blue). In another example (Figure 2A, lower panel), when bubbles detach from the surface of the glass and move along the length of the electrode this causes abrupt changes in the direction of the baseline drift that cannot be compensated by drift subtraction. Figure 2B shows representative “positive” recordings of WT and miR-204 ko/ko cre/+ mice where the bubbles have been eliminated using the vacuum chamber prior to assembling the microelectrodes into the electrode holder stands.
The best fit line to the initial 25 s (green) is calculated and shown in blue (Figure 2B). The drift corrected responses are replotted in Figure 2C along with the identification of the amplitudes of the DC-ERG components. Using the DC-ERG technique described in this protocol animals from both WT and miR-204 ko/ko cre/+ strains can quickly be recorded and analyzed.
The c-wave is composed of two components: a hyperpolarization of the RPE apical membrane due to increased potassium conductance in response to a decrease in potassium in the subretinal space due to photoreceptor activity and a separate contribution originating from inner retinal cells (slow P3 component – reflecting the activity of Müller cells). The fast oscillation provides information regarding the hyperpolarization of the RPE basolateral membrane26, primarily due to changes in the conductance of a Cl transporter called cystic fibrosis transmembrane conductance regulator (CFTR)27. The light peak is thought to originate from a change in the concentration of a photoreceptor driven substance28 that through a second messenger system depolarizes the RPE’s basolateral membrane by modulating the activity of Ca2+ dependent Cl channels21. Lastly, the off-response is a complex interaction of responses that differ in polarity and vary with light intensity18.
As expected, reduced expression of Kir 7.1 K+ channels greatly attenuates the c-wave29 and fast oscillation as shown in the averaged responses in Figure 2D, indicating a significant impairment of the RPE’s electrical properties. A summary of the changes in the components of the DC-ERG are provided in Figure 2E. The relative amplitudes of the DC-ERG components (normalized to WT) are plotted against the relative two largest light-evoked a-wave amplitudes (1 cd·s/m2; 10 cd·s/m2) (normalized to WT) and shown in Figure 2F‒H. The reduction in the a-wave response to the brightest light intensity (10cd·s/m2) (Figure 2F‒H, Supplementary Figure S1A,B) suggests a delay in the recovery of sensitivity due to visual cycle impairment (e.g., resulting from reduced LRAT or RPE65 expression as a result of genomic knockout of miR-20424,30).
Figure 1: The diagram highlights key steps in the DC-ERG protocol. (A) Image of the completed circuit accomplished by lowering the recording (glass capillary microelectrodes), reference, and ground electrodes into the same bath solution. This configuration enables preliminary tests to be run (prior to anesthetizing the mouse) to evaluate the characteristic impedance, noise, and drift. Inset (upper left) showing a side-view schematic of the custom microelectrode holder stand. (B) Representative image of the Impedance Checking Mode showing the appropriate values for electrode impedances. The impedance in the Left and Right eye electrodes should be comparable, within 5 KΩ of each other (e.g., Left eye: 38.7 KΩ vs. Right eye: 40.36 KΩ). The impedance of the mouth reference electrode should be less than 1 KΩ, whereas the tail electrode should be around 2.5 KΩ. (C) Representative image of the preview trace (Step 4/6) is shown. Step 4 (Long Flash No Light) is selected as no light is delivered during the preview of this step. The traces should be low noise and may have a slight drift that gradually fades with time to baseline. Once the traces have achieved a constant drift in both channels and become relatively flat, the actual recording can begin. (D) Using Step 5/6 (Long Flash 10 cd 7 min) after 0.5 min of darkness, a light step of 10 cd/m2 is delivered to the mouse for 7 min followed by a return to darkness for 1.5 min. (E) Image of the export parameters used to convert the data to a *.csv file. This precise format is required to run the DC-ERG analysis software. Please click here to view a larger version of this figure.
Figure 2: Representative traces and workflow of DC-ERG analysis. Image of a negative DC-ERG result displaying excessive (A, top panel) peak-to-peak noise and (A, bottom panel) drift. (B) Images of positive DC-ERG recording results from a WT and miR-204 ko/ko cre/+ mouse. Generated plots of the raw traces showing the best fit lines (blue) to the initial 25 s (green) prior to light onset. (C) Plots of the drift corrected DC-ERG responses for the WT and miR-204 ko/ko cre/+ mice shown in B. The amplitudes of the components of the DC-ERG are indicated in the legend. (D) Averaged DC-ERG responses of 3–8 months old WT (n = 6) and miR-204 ko/ko cre/+ (n = 6) mice. The DC-ERG components are labeled on the WT trace and the light stimulation parameters are defined below. (E) Summary of DC-ERG components taken from recordings of WT and miR-204 ko/ko cre/+ mice. Bar plots represent mean, error bars indicate standard error. The relative amplitudes of the (F) c-wave, (G) fast oscillation, and (H) off response are plotted against the relative two largest light-evoked a-wave amplitudes (1 cd·s/m2; 10 cd·s/m2) (normalized to WT). Significance is indicated by asterisks: (Student’s t-test; * = p < 0.05, ** = p < 0.01, *** = p < 0.001). Please click here to view a larger version of this figure.
Supplementary Figure 1: ERG responses of WT and miR-204 ko/ko cre/+ mice. (A) Responses of WT (black) and miR-204 ko/ko cre/+ mice (magenta) to 4 ms flashes of light of increasing intensity: 0.0001 cd·s/m2 (n = 5), 0.001 cd·s/m2 (n = 5), 0.01 cd·s/m2 (n = 3), 0.1 cd·s/m2 (n = 3), 1 cd·s/m2 (n = 3), 10 cd·s/m2 (n = 2). (B) Averaged a-wave amplitude plotted against flash intensity. (C) Averaged b-wave amplitude plotted against flash intensity. (D) Averaged time-to-peak of a-wave responses plotted against flash intensity. (E) Averaged time-to-peak of b-wave responses plotted against flash intensity. For all plots shown error bars indicate SEM. Significance is indicated by asterisks: (Student’s t-test; * = p < 0.05). Please click here to download this figure.
Supplementary Figure 2: Example of a DC-offset in the power line that can be mitigated with the use of a voltage regulator/power conditioner. (A) In the absence of voltage regulation voltage spikes (caused by the use of equipment in an adjacent room e.g., OCT) generate a DC-offset that can interfere with the measurement of the DC-ERG components, especially the light peak. The disruptive offset is magnified on the right. (B) With the voltage regulator/power conditioner enabled the initial spike is still noticeable but the damaging DC-offset is removed. The effect of the voltage regulator/power conditioner is magnified and shown to the right. Please click here to download this figure.
Supplementary Files. Please click here to download these files.
Critical Steps
A good DC-ERG recording requires stable electrodes that are free from bubbles that create artifacts and unwanted drift as they are extremely sensitive to outgassing and temperature changes. It is essential that a stable baseline is achieved when the electrodes are placed in the HBSS bath solution before proceeding forward with the mouse recording. Small bubbles tend to collect at the base of the capillary electrode or around the silicone gasket and are difficult to see once the electrode holder is fully assembled. When few bubbles are present, lightly flicking the holder will free them for removal. If there are too many bubbles or the drift or noise cannot be removed, it is often better to disassemble the electrode and start over while carefully inspecting for bubbles at each step of the process.
Modifications and Troubleshooting
The following customizations can be made to the setup (Table of Materials) in order to improve the fidelity of the DC-ERG recordings. Low-noise cables for microelectrode holders can be used to extend the existing cables from the 32-bit amplifier to the recording table. The additional length enables the careful placement and adjustment of the electrode holder without disturbing their position once the Ganzfeld dome is closed. A voltage regulator/power conditioner can be used to eliminate in line noise and power surges generated from lights or equipment in adjacent rooms being turned on and off (Figure S2). Additionally, the tabletop Ganzfeld dome stimulator and the 32-bit amplifier can be placed inside a Faraday cage grounded to the building ground bar to shield against any additional electrical noise.
Limitations of the Method
The DC-ERG can only be recorded faithfully on dark adapted animals meaning that once the light stimulus is turned on there is little that can be done to eliminate undesirable potentials or drift. Another limitation is that the polarity of some of the components of the DC-ERG (light-peak, off-response) is subject to the light intensity used16. This means that the greatest deviations from WT may occur at intensities not inherently present at the light intensity that this protocol uses (10 cd/m2). To this point, the DC-ERG analysis software was designed assuming a negative off response (a response minimum). Brighter light intensities that result in the reversal of polarity of the off response will require the need to alter the included analysis script file.
Significance
The RPE is involved in the homeostatic maintenance of the retinal environment and plays a critical role in the pathology of several retinal diseases. This method explains in detail how to setup a DC-ERG system to record the RPE electrical response that when performed in conjunction with conventional ERG recordings provides an objective measure of outer retinal and RPE function. These measures of RPE functionality can be used to evaluate transgenic mouse lines displaying degenerative phenotypes or to test for drug-efficacy or drug-induced cytotoxicity to the RPE.
The authors have nothing to disclose.
This work was supported by NEI intramural funds. The authors sincerely acknowledge Dr. Sheldon Miller for his scientific guidance, technical advice, and expertise in RPE physiology and disease. The authors thank Megan Kopera and the animal care staff for managing the mouse colonies, and Dr. Tarun Bansal, Raymond Zhou, and Yuan Wang for technical support.
Ag/AgCl (mouth) Electrode | WPI Inc | EP1 | Mouth reference electrode for mouse |
Ceramic Tile | Sutter Instrument | CTS | Used to cut the glass capillary tube to an appropriate size |
Cotton Tipped Cleaning Stick | Puritan Medical Products | 867-WC No Glue | To be used as a spacer to improve the fit of the electrode holder assembly |
Electroretinogram (ERG) System | Diagnosys LLC | E3 System | Visual electrophysiology system to diagnose ophthalmic conditions in vision research and drug trials |
Bunsen Burner | Argos Technologies | BW20002460 | Or equivlaent to shape glass under flame |
Glass Capillary Tube (1.5 mm) | Sutter Instruments | BF150-75 | For filling with HBSS and making contact to the cornea |
Hank’s Buffered Salt Solution (HBSS) | Thermo Fisher Scientific Inc | 14175-095 | Commercially available. Maintain at RT |
In-Line Filter | Whatman | 6722-5001 | To protect vacuum pump from aerosols |
Low Noise Cable for Microelectrode Holders | WPI Inc | 5372 | Suggested for improving the length and placement of the cables and electrode holder assemblies |
Magnetic Ball Joint | WPI Inc | 500871 | For magnetically positioning the electrode holder assembly on the stage |
MatLab | Mathworks | MatLab: For editing the analysis software | |
Matlab Curvefit Toolbox | Mathworks | Toolbox for MatLab (only required for editing the analysis software) | |
MatLab Compiler | Mathworks | Toolbox for MatLab (only required for editing and re-releasing the analysis software) | |
MatLab Runtime version 9.5 | Mathworks | R2018b (9.5) | Required to run the analysis software: https://www.mathworks.com/products/compiler/matlab-runtime.html |
Microelectrode Holders (45 degrees) | WPI Inc | MEH345-15 | For holding the capillaries |
Needle (25 ga) | Covidien | 8881250313 | For filling the capillary tubes with HBSS |
needle (ground) electrode | Rhythmlink | 13mm – one elctrode | Subdermal needle electrode (ground) for mouse (13mm long, 0.4mm diameter needle, 1.5m leadwire) |
Regulator/Power Conditioner | Furman | P-1800 | Or equivalent to remove DC-offset from noise introduced through power line |
Syringe (12 mL) | Monoject | 1181200777 | For filling the capillary tubes with HBSS |
T-clip | Cole-Parmer | 06852-20 | For electrode holder assembly |
Vacuum Desiccator | Bel-Art | 420120000 | Clear polycarbonate bottom & cover |
Pharmacological treatment | |||
Lubricant eye gel | Alcon | 0078-0429-47 | Helps lubricates corneal surface and maintain electrical contact with capillary electrodes |
Phenylephrine Hydrochloride 2.5% | Akorn | 17478-201-15 | Short acting mydriatic eye drops (for pupil dilation) |
Proparacaine Hydrochloride 0.5% | Akorn | 17478-263-12 | Local anesthetic for ophthalmic instillation |
Tropicamide 0.5% | Akorn | 17478-101-12 | Short acting mydriatic eye drops (for pupil dilation) |
Xylazine | AnaSed | sc-362949Rx | Analgesic and muscle relaxant |
Zetamine (Ketamine HCl) | VetOne | 501072 | Anesthetic for intramuscular injections |