Summary

从成人和老化小鼠的河马切片中尽量减少低氧

Published: July 02, 2020
doi:

Summary

这是一个急性切片制备从成人和老化的小鼠海马,利用转心灌注和切片切割与冰冷的NMDG-aCSF,以减少对组织的低氧损伤。生成的切片在几个小时内保持健康,并适用于长期的贴片夹和现场记录。

Abstract

急性海马切片使几代神经科学家能够详细探索突触、神经元和电路特性,并具有高保真度。没有这种经典的准备,不可能探索LTP和LTC机制、单神经元树突计算以及电路中依赖于经验的变化。然而,除了少数例外,大多数使用急性海马切片的基础研究都是使用相对年轻的啮齿动物的切片进行,+P20-P40,即使突触和内在兴奋机制有一个长长的发育尾巴,达到过去的P60。使用年轻的海马切片的主要吸引力是维持神经元健康,辅之以对低氧损伤的耐受性。然而,有必要了解神经功能在更成熟的发展阶段,进一步突出了各种动物模型的神经退行性疾病,需要老化的大脑准备。在这里,我们描述了对急性海马切片制剂的修改,该制剂可靠地从成年和老化的小鼠海马中提供健康的切片。该协议的关键步骤是转心灌注和切割与无冰钠无NMDG-aSCF。总之,这些步骤一起减轻脱毛时 ATP 中缺氧引起的下降,以及被动钠通量引起的细胞毒性水肿。我们演示如何使用振动微原子切割海马体和皮层的横切片。用这种方式获得的急性海马切片在数小时的录音中可靠健康,适用于现场记录和靶向贴片记录,包括荧光标记神经元的目标。

Introduction

哺乳动物急性脑切片制剂的出现促进了细胞和突触水平的实验,这些实验以前只能在无脊椎动物制剂(如Aplysia1)中实现。急性海马切片的发展具有特殊意义,因为它是一种负责工作记忆和上下文形成的结构,并且具有一种专门的三突触电路,易于生理操作。然而,绝大多数急性脑片仍然由相对年轻的小鼠和大鼠组成,因为它更容易保存健康的神经元和回路,而且这些切片在较长时间2、3、43期间仍然存活2在这里,我们引入对标准切片协议的修改,提高成年和老化小鼠急性海马切片的生存能力。

哺乳动物大脑白症的长期外生力的主要障碍是,一旦血液在斩首后停止流向大脑,就迅速发生最初的缺氧损伤。缺氧导致大脑中主要能量资源的快速代谢消耗,磷肌酸(P-肌酸)损失速度最快,其次是葡萄糖、三磷酸腺苷(ATP)和糖原4。保存ATP对于大脑切片的长期健康特别重要,因为ATP需要通过Na-K ATPase保持膜电位,从而维持神经活动5,6。,6成年啮齿动物大脑中的ATP水平为±2.5 mM,在斩首后约1分钟、7、8时,在斩首后20秒内急剧下降,达到基底稳定状态(±0.5 mM)。4,7,8在幼年动物中,观察ATP相同下降需要更长的时间(±2分钟);与苯巴比他麻醉,它进一步放缓到4分钟4。这些考虑表明,防止ATP和其他能量资源的丧失是防止大脑缺氧损伤的必要策略,反过来又可以长期维持大脑切片的健康,特别是在成年动物中。

低温减慢新陈代谢。因此,已经证明适度的体温过低可以保护大脑能量储备:在幼年动物中,将体温从37°C降低6度至31°C,将ATP水平控制在4小时以上的控制缺氧9中,将ATP水平控制在正常水平的80%左右。P-肌酸水平同样保留,以及整体磷酸化电位9。这表明,在斩首前降低体温可能是神经保护,因为ATP的接近正常水平可以通过切片切割和切片恢复期保持。

由于在斩首时无法完全防止ATP下降,预计Na-K ATPase的功能会部分受损,然后通过被动钠流入去极化。由于被动钠的涌入后,水进入细胞,它导致细胞毒性水肿,并最终皮刀病。在成年大鼠中,用蔗糖代替蔗糖是减轻细胞毒性水肿10、11,负担的成功策略。最近,减少钠通道渗透性12的甲基化有机化合物已经证明比蔗糖提供更有效的保护,特别是在成年小鼠的切片中,N-甲基-D-葡萄糖,胺(NMDG)在不同年龄和大脑区域,13、14、15、16中13,14应用得最广泛15

许多大脑切片方案涉及仅在切片切割步骤期间使用低温,有时与 Na+离子替换策略16,,17 相结合。在幼年动物中,这些协议似乎提供了足够的神经保护,因为大脑可以在斩首后迅速提取,因为头骨仍然薄,易于切除3。然而,这种策略并不能从成年动物身上产生健康的切片。随着时间的推移,一些研究成年啮齿动物的实验室已经引进了转心灌注与冰冷的溶液,以降低动物的体温,因此在斩首之前对大脑的缺氧损伤。该程序被成功地应用于产生小脑片18,中脑切片19,新皮质切片11,20,腹皮层11,2021,大鼠海马10,22,23,嗅球24,腹状盘,22,23状体25,视觉皮层26。

尽管跨心灌注和Na+离子替代在准备大鼠切片和小鼠某些大脑区域提供了优势,但小鼠海马仍然是保护13,20,缺氧的最具挑战性的区域之一。迄今为止,从老化的小鼠和神经退化的小鼠模型中切分海马体的最常见方法之一涉及分离的海马27的经典快速切片。在此描述的协议中,我们通过将脱毛前引入体温过低,通过用冰冷的 Na+– 基于 NMDG 的免费人工脑脊髓液 (NMDG) 来将动物转行,从而最大限度地减少成人大脑中 ATP 的损失。然后切成冰片在冰冷的 Na+ 无Nmdg – acsf。通过这种增强的协议,我们从成年和老化的小鼠获得急性海马切片,切片后健康长达10小时,适合长期现场记录和贴片夹研究。

Protocol

该协议是根据国家卫生研究院实验室动物护理和使用指南执行的,并经斯坦福大学机构动物护理和使用委员会批准。方法也符合神经科学学会关于在神经科学研究中使用动物和人类的政策。 注:所有小鼠都保持在无病原体的环境中。除非另有说明,否则此处使用混合C57Bl/6 x SV/129J遗传背景的野生小鼠。 1. 设置 准备 1 L 的 1x aCSF (以 mM): 125 NaCl,…

Representative Results

我们应用上述协议,从CamKIIa-Cre+生成海马切片;混合遗传背景的WT小鼠C57Bl/ 6 x SV/ 129J,在P> 120。在CA1场(图2A)和亚分细胞(图2B)中,当在红外差分对比度显微镜(IR-DIC)下观察到时,会出现低对比度,这是切片制备中健康细胞的标志。通过这种制备,可高千兆欧姆密封件(>90%)当目标为表面以下约 20 微米的最健康细胞时,通常实现。对于此成功率,…

Discussion

此处描述的协议表明,从成年和老化的小鼠获得的海马切片在切割后可以保持健康和存活数小时。使用此协议准备的切片适用于修补夹录制以及 CA1 区域中的持久现场录制。

此协议中有两个关键步骤。第一步是使用冰冷的溶液的跨心灌注步骤。快速清除血液是由肝脏颜色的快速变化发出的信号。提取的大脑应该是非白色的颜色。如果大脑保持粉红色,这意味着全身血液没有被…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我感谢卡拉·沙茨博士的建议和支持,感谢芭芭拉·布罗特博士和米歇尔·德鲁斯博士认真阅读手稿。这项工作得到了NIH EY02858和马瑟斯慈善基金会对CJS的资助。

Materials

“60 degree” tool made in-house
#10 scalpel blade Bard-Parker (Aspen Surgical) 371110
1M CaCl2 Fluka Analytical 21114
95%O2/5%CO2 Praxiar or another local supplier
Acepromazine maleate (AceproJect) Henry Schein 5700850
Agar Fisher BP1423-500
Beakers, measuring cylinders, reagent bottles
Brushes size 00-2 Ted Pella Crafts stores are another source of soft brushes, with larger selection and better quality than Ted Pella.
CCD camera Olympus XM10
Choline bicarbonate Pfalz & Bauer C21240
Cyanoacrilate glue Krazy glue Singles
Decapitation scissors FST 14130-17
Feather blades Feather FA-10
Filter paper #2 Whatman Either rounds or pieces cut from a bigger sheet work well.
Forceps A. Dumont & Fils Inox 3c
Glass bubblers (Robu glass borosillicate microfilter candles) – porosity 3 Robuglas.com 18103 or 18113 Glass bubblers are more expensive than bubbling stones used in aquaria. However, they are easy to clean and sterilize, and can last a long time.
Glucose Sigma-Aldrich G8270
HCl Fisher A144SI-212
Ice buckets
KCl Sigma-Aldrich P4504
Ketamine HCl (KetaVed) VEDCO NDC 50989-996-06
KH2PO4 Sigma-Aldrich P0662
Leica Tissue slicer VT1000S The cutting settings are 1 mm horizontal blade amplitude, frequency dial at 9, and speed setting at 2
Magnetic stirrers and stir bars
Mg2SO4 x 7H2O Sigma-Aldrich 230391
MgCl2 Sigma-Aldrich M9272
MilliQ water machine Millipore Source for 18 Mohm water
Na-ascorbate Sigma-Aldrich A4035
Na-pyruvate Sigma-Aldrich P8574
NaCl Sigma-Aldrich S3014
NaHCO3 EMD SX0320-1
Needle 27G1/2
NMDG Sigma-Aldrich M2004
Paper tape
Peristaltic pump Cole-Parmer #7553-70
Peristaltic pump head Cole-Parmer Masterflex #7518-00
Personna blades Personna double edge Amazon
pH meter
Recovery chamber in-house made
Scalpel blade handle size 3 Bard-Parker (Aspen Surgical) 371030
Scissors angled blade FST 14081-09
Single edge industrial razor blade #9 VWR 55411
Spatulas
Transfer pipettes Samco Scientific 225
Upright microscope Olympus BX51WI
Xylazine HCl (XylaMed) VetOne 510650

References

  1. Glanzman, D. L. The cellular mechanisms of learning in Aplysia: of blind men and elephants. Biological Bulletin. 210 (3), 271-279 (2006).
  2. Aitken, P. G., et al. Preparative methods for brain slices: a discussion. Journal of Neuroscince Methods. 59 (1), 139-149 (1995).
  3. Edwards, F. A., Konnerth, A. Patch-clamping cells in sliced tissue preparations. Methods in Enzymology. 207 (13), 208-222 (1992).
  4. Lowry, O. H., Passonneau, J. V., Hasselberger, F. X., Schulz, D. W. Effect of Ischemia on Known Substrates and Cofactors of the Glycolytic Pathway in Brain. Journal of Biological Chemistry. 239, 18-30 (1964).
  5. Lipton, P., Whittingham, T. S. The effect of hypoxia on evoked potentials in the in vitro hippocampus. Journal of Physiology. 287, 427-438 (1979).
  6. Lipton, P., Whittingham, T. S. Reduced ATP concentration as a basis for synaptic transmission failure during hypoxia in the in vitro guinea-pig hippocampus. Journal of Physiology. 325 (1), 51-65 (1982).
  7. Free Mandel, P. H.S. Free nucleotides of the brain in various mammals. Journal of Neurochemistry. 8, 116-125 (1961).
  8. Andjus, R. K., Dzakula, Z., Markley, J. L., Macura, S. Brain energetics and tolerance to anoxia in deep hypothermia. Annals of the New York Academy of Sciences. 1048, 10-35 (2005).
  9. Williams, G. D., Dardzinski, B. J., Buckalew, A. R., Smith, M. B. Modest hypothermia preserves cerebral energy metabolism during hypoxia-ischemia and correlates with brain damage: a 31P nuclear magnetic resonance study in unanesthetized neonatal rats. Pediatric Research. 42 (5), 700-708 (1997).
  10. Gasparini, S., Losonczy, A., Chen, X., Johnston, D., Magee, J. C. Associative pairing enhances action potential back-propagation in radial oblique branches of CA1 pyramidal neurons. Journal of Physiology. 580 (3), 787-800 (2007).
  11. Thomson, A. M., Bannister, A. P. Release-independent depression at pyramidal inputs onto specific cell targets: dual recordings in slices of rat cortex. Journal of Physiology. 519 (1), 57-70 (1999).
  12. Hille, B. The permeability of the sodium channel to organic cations in myelinated nerve. Journal of General Physiology. 58 (6), 599-619 (1971).
  13. Ting, J., Daigle, T., Chen, Q., Feng, G., Martina, M., Taverna, S. . Patch-Clamp Methods and Protocols. 1183, 221-242 (2014).
  14. Jiang, X., et al. Principles of connectivity among morphologically defined cell types in adult neocortex. Science. 350 (6264), 1-10 (2015).
  15. Djurisic, M., Brott, B. K., Saw, N. L., Shamloo, M., Shatz, C. J. Activity-dependent modulation of hippocampal synaptic plasticity via PirB and endocannabinoids. Molecular Psychiatry. 24 (8), 1206-1219 (2019).
  16. Djurisic, M., et al. PirB regulates a structural substrate for cortical plasticity. Proceedings of the National Academy of Sciences U S A. 110 (51), 20771-20776 (2013).
  17. Vidal, G. S., Djurisic, M., Brown, K., Sapp, R. W., Shatz, C. J. Cell-Autonomous Regulation of Dendritic Spine Density by PirB. eNeuro. 3 (5), 1-15 (2016).
  18. Blot, A., Barbour, B. Ultra-rapid axon-axon ephaptic inhibition of cerebellar Purkinje cells by the pinceau. Nature Neuroscience. 17 (2), 289-295 (2014).
  19. Lammel, S., Ion, D. I., Roeper, J., Malenka, R. C. Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron. 70 (5), 855-862 (2011).
  20. Ting, J. T., et al. Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-glucamine Protective Recovery Method. Journal of Visual Experiments. (132), e53825 (2018).
  21. Moyer, J. R., Brown, T. H. Methods for whole-cell recording from visually preselected neurons of perirhinal cortex in brain slices from young and aging rats. Journal of Neuroscience Methods. 86 (1), 35-54 (1998).
  22. Losonczy, A., Magee, J. C. Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron. 50 (2), 291-307 (2006).
  23. Frick, A., Magee, J., Johnston, D. LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nature Neuroscience. 7 (2), 126-135 (2004).
  24. Alvarado-Martinez, R., Salgado-Puga, K., Pena-Ortega, F. Amyloid beta inhibits olfactory bulb activity and the ability to smell. PLoS One. 8 (9), 75745 (2013).
  25. Brooks, J. M., O’Donnell, P. Kappa Opioid Receptors Mediate Heterosynaptic Suppression of Hippocampal Inputs in the Rat Ventral Striatum. Journal of Neuroscience. 37 (30), 7140-7148 (2017).
  26. Goel, A., Lee, H. K. Persistence of experience-induced homeostatic synaptic plasticity through adulthood in superficial layers of mouse visual cortex. Journal of Neuroscience. 27 (25), 6692-6700 (2007).
  27. Mathis, D. M., Furman, J. L., Norris, C. M. Preparation of acute hippocampal slices from rats and transgenic mice for the study of synaptic alterations during aging and amyloid pathology. Journal of Visual Experiments. (49), e2330 (2011).
  28. Izumi, Y., Zorumski, C. F. Neuroprotective effects of pyruvate following NMDA-mediated excitotoxic insults in hippocampal slices. Neuroscience Letters. 478 (3), 131-135 (2010).
  29. Hajos, N., Mody, I. Establishing a physiological environment for visualized in vitro brain slice recordings by increasing oxygen supply and modifying aCSF content. Journal of Neuroscience Methods. 183 (2), 107-113 (2009).
  30. . Hippocampus Rat Available from: https://synapseweb.clm.utexas.edu/hippocampus-rat (1999)
  31. Combe, C. L., Canavier, C. C., Gasparini, S. Intrinsic Mechanisms of Frequency Selectivity in the Proximal Dendrites of CA1 Pyramidal Neurons. Journal of Neuroscience. 38 (38), 8110-8127 (2018).
  32. Rothman, S. M. The neurotoxicity of excitatory amino acids is produced by passive chloride influx. Journal of Neuroscience. 5 (6), 1483-1489 (1985).

Play Video

Cite This Article
Djurisic, M. Minimizing Hypoxia in Hippocampal Slices from Adult and Aging Mice. J. Vis. Exp. (161), e61377, doi:10.3791/61377 (2020).

View Video