Presented here is a protocol to transiently open the blood-brain barrier (BBB) either focally or throughout a mouse brain to deliver fluorescently-labeled antibodies and activate microglia. Also presented is a method to detect the delivery of antibodies and microglia activation by histology.
Only a small fraction of therapeutic antibodies targeting brain diseases are taken up by the brain. Focused ultrasound offers a possibility to increase uptake of antibodies and engagement through transient opening of the blood-brain barrier (BBB). In our laboratory, we are developing therapeutic approaches for neurodegenerative diseases in which an antibody in various formats is delivered across the BBB using microbubbles, concomitant with focused ultrasound application through the skull targeting multiple spots, an approach we refer to as scanning ultrasound (SUS). The mechanical effects of microbubbles and ultrasound on blood vessels increases paracellular transport across the BBB by transiently separating tight junctions and enhances vesicle- mediated transcytosis, allowing antibodies and therapeutic agents to effectively cross. Moreover, ultrasound also facilitates the uptake of antibodies from the interstitial brain into brain cells such as neurons where the antibody distributes throughout the cell body and even into neuritic processes. In our studies, fluorescently labeled antibodies are prepared, mixed with in-house prepared lipid-based microbubbles and injected into mice immediately before SUS is applied to the brain. The increased antibody concentration in the brain is then quantified. To account for alterations in normal brain homeostasis, microglial phagocytosis can be used as a cellular marker. The generated data suggest that ultrasound delivery of antibodies is an attractive approach to treat neurodegenerative diseases.
Therapeutic ultrasound is an emerging technology aimed at treating brain diseases in a noninvasive manner, in part by facilitating access of therapeutic agents to the brain1,2,3. As only a small fraction of therapeutic antibodies targeting brain diseases are taken up by and retained in the brain4, therapeutic ultrasound offers the possibility to increase their uptake and target engagement5,6.
In our laboratory, we are developing therapeutic approaches for neurodegenerative diseases in which an antibody in various formats is delivered across the blood-brain barrier (BBB) using microbubbles. To achieve this, ultrasound is applied through the skull into the brain in multiple spots using a scanning mode we refer to as scanning ultrasound (SUS)7. The mechanical interaction between the ultrasound energy, the intravenously injected microbubbles and the brain vasculature transiently separates the tight junctions of the BBB in a given sonication volume, allowing antibodies and other cargoes including therapeutic agents to effectively cross this barrier7,8,9. Moreover, ultrasound has been shown to facilitate the uptake of antibodies from the interstitial brain into brain cells, such as neurons, where the antibody distributes throughout the cell body and even into neuritic processes5,10.
Alzheimer's disease is characterized by an amyloid-β and tau pathology11, and a host of animal models is available to dissect pathogenic mechanisms and validate therapeutic strategies. A SUS approach, by which ultrasound is applied in a sequential pattern across the entire brain, when repeated over several treatment sessions, can reduce amyloid plaque pathology in the brains of amyloid-β-depositing amyloid precursor protein (APP) mutant mice and activate microglia which take up the amyloid, leading to improvement in cognitive function7. BBB opening with ultrasound and microbubbles also reduces tau pathology in pR5, K3 and rTg4510 tau transgenic mice5,12,13. Importantly, whilst microglia remove extracellular protein deposits, one of the underlying clearance mechanisms for intraneuronal pathologies induced by SUS is the activation of neuronal autophagy12.
Here, we outline an experimental process, by which fluorescently labeled antibodies are prepared, and then mixed with in-house lipid-based microbubbles, followed by retroorbital injection into anesthetized mice. Retroorbital injection is an alternative to tail vein injection which we have found to be equally efficacious and simpler to repeatedly perform. This is immediately followed by applying SUS to the brain. To determine the therapeutic antibody uptake, mice are sacrificed and the increased antibody concentration in the brain is then quantified. As a proxy of the change in brain homeostasis, microglial phagocytic activity is determined by histology and volumetric 3D reconstruction.
The generated data suggest that ultrasound delivery of antibodies is a potentially attractive approach to treat neurodegenerative diseases. The protocol can be similarly applied to other drug candidates, as well as model cargos such as fluorescently labeled dextrans of defined sizes14.
All animal experiments were approved by the animal ethics committee of the University of Queensland.
1. In-house microbubble preparation
2. Microbubble quality control using a coulter counter
3. Fluorescent antibody labeling
4. Ultrasound set-up
5. Animal preparation
6. Microbubble preparation
7. Ultrasound treatment
8. Tissue harvesting and processing
9. Tissue staining and image acquisition
10. Image analysis
Using this protocol fluorescently-labeled antibodies are delivered to the brain and can be detected, along with microglia activation. The conclusion that can be drawn is the use of focused ultrasound and microbubbles markedly enhances brain uptake of antibodies and can deliver antibodies to the whole brain or hemisphere of a mouse when used in a scanning mode. Figure 1 shows the TIPS ultrasound application device (different components labeled) that is used to open the BBB. Figure 2 shows the representative results from Coulter counter measurements of size and concentration which should be obtained when the microbubbles are produced correctly. To easily visualize the delivery, the antibodies were labeled with a far-red fluorescent dye. Antibody uptake by the brain can be easily visualized in whole brain or sections using an infrared scanner or using fluorescent microscopy on brain sections. Brain sections show the location of the fluorescently labeled antibody at a microscopic level. Representative results for scanning ultrasound delivery to the hippocampus of fluorescently labeled anti-tau antibody RN2N is shown in Figure 3. To observe any alteration of normal brain homeostasis as a consequence of SUS and antibody delivery, one read-out was the microglial lysosomal content in relation to phagocytosis. Figure 4 shows representative staining for microglia using Iba1 and the microglial lysosome specific marker CD68 to determine whether microglia become more phagocytic following the delivery of the antibody.
Figure 1: The focused ultrasound system used for delivering ultrasound with critical components being labeled. (A) The home-made gel holder serving as an 8 mm spacer. (B) View through the transducer showing how the target is aligned with the focus visually (C). Please click here to view a larger version of this figure.
Figure 2: Quality control measurements of in-house prepared microbubbles. (A) Coulter counter equipment used to obtain summary statistics (B) and size distribution of microbubbles in number (C) and volume distribution (D). Please click here to view a larger version of this figure.
Figure 3: Delivery of fluorescently-labeled antibody into the brain using SUS. (A) A fluorescently labeled antibody fragment specific for a tau isoform delivered on its own, SUS on its own, and a combination treatment revealed increased uptake of the antibody by a sonicated hemisphere when combined with SUS using near infrared fluorescent imaging of one hemisphere of the brain. A look-up-table (LUT) was applied, with higher fluorescence intensity in arbitrary units displayed in warmer colors. (B) Quantification of fluorescence was done without subtracting the SUS-only control levels of background fluorescence. Mean ± SEM shown. (C) Increased uptake of the fluorescently labeled antibody by hippocampal neurons shown in low and high magnification images of brain sections. In the combination treatment, the antibody distributes into cell bodies and even dendrites as shown for hippocampal neurons. Blue=DAPI, magenta=antibody fragment. Scale bar: 50 µm. Please click here to view a larger version of this figure.
Figure 4: Representative immunofluorescence labeling for microglia, showing the expected morphology of microglia and rendered in 3D with the image analysis software. Microglia morphology is observed in green and levels and distribution of CD68 is observed in red. Scale bar 10 µm. Green=Iba1, red=CD68. Please click here to view a larger version of this figure.
Fluorescently-labeled antibodies can be delivered to the brain using focused ultrasound together with microbubbles applied in a scanning mode. Antibody delivery, microglial morphology and lysosomal enlargement can be detected by fluorescence microscopy following scanning ultrasound. Microglia can take up into their lysosomes antibodies and antigens that the antibodies have bound to in an Fc-receptor-mediated process4.
There are a number of critical steps to achieve repeatable BBB opening and antibody delivery using this method. It is critical to ensure good coupling between the ultrasound transducer and the head of the mouse. Remove all of the hair on the head of the mouse and ensure that there are no air bubbles in the coupling. The characteristics of the in-house prepared microbubbles are critical to success. Microbubbles must have a sufficient concentration of 108 microbubbles/mL and a size distribution such that over 90% of the microbubbles are below 10 µm in diameter. This is because larger microbubbles are known to be filtered out of the circulation by the lungs. An acceptable median size is between 1 -3 µm. Microbubbles must be handled and injected gently to avoid destroying them in the syringe. It is important that the ultrasound be applied no later than 2 min following the injection of the microbubbles which can be achieved with practice. Targeting of a whole brain or entire hemisphere is easily achieved with the SUS approach and accuracy of targeting is unlikely to be a problem when targeting large regions. A smaller brain region such as the hippocampus or striatum can also be successfully targeted but in this case it is important that the focus overlaps the targeted region. The height of a mouse brain is similar to the axial length of the focused ultrasound beam at 1 MHz using a typical ultrasound transducer, so that the transducer needs only be moved in the x and y dimension and not the z dimension. This can be determined by the knowledge of stereotaxic coordinates for a particular brain structure and by viewing of the lambdoid and sagittal sutures through the depilated skin of the mouse.
Here we demonstrate a technique that uses retroorbital injections to deliver microbubbles and antibody. An alternative to retroorbital injections is tail vein injections which is also an effective technique to deliver microbubbles and antibodies. The advantages of retroorbital injection is it is technically less challenging than tail vein injections, and can be repeated multiple times (alternating eye of injection) with very minimal risk of tissue damage.
If no fluorescently labeled antibody is detected in the brain it is probable that the BBB did not open. Troubleshooting should focus on obtaining a concentrated microbubble solution and injecting it so as not to destroy the microbubbles and delivering the ultrasound within two minutes of the injection time. If no BBB opening occurs, the peak negative pressure setting can be increased, with the caveat that higher peak negative pressures increase the chance of causing microhemorrhages which we do not detect at a peak negative pressure setting of 0.65 MPa using the settings described. Depending on the antigen specificity of the antibody the staining pattern will be different. The staining pattern obtained when injecting an anti-tau antibody is shown in Figure 2.
This technique can be applied to a range of antibodies and as long as consistent BBB opening is obtained, binding of the antibody to a target in the brain can be assessed. The scanning ultrasound approach achieves opening of the BBB across an entire mouse brain in a reproducible manner.
A limitation of this technique is that the occurrence and extent of the BBB opening is not observed while the mouse is alive. This limitation could be overcome by including MRI imaging with gadolinium contrast agent to the procedure, but this significantly increases the time and cost of the procedure.
Described here is a single sonication and single administration of antibody protocol which can be used to determine how much increased uptake of antibodies can be achieved, as well as where they are located in the brain after delivery. The protocol can also be used in a longitudinal study to assess therapeutic effects of antibody delivery. In a treatment study the protocol can be repeated with an inter-treatment interval of one week or longer in order to evaluate the therapeutic potential of an antibody delivered to the brain. The therapeutic potential of the antibody delivered by ultrasound can be assessed in transgenic mouse models of neurodegenerative diseases. Read-outs of therapeutic effect could include behavioral tests, and histology and biochemistry for the levels of pathological proteins for example tau, amyloid-β or synuclein.
In conclusion, we have outlined a method to open the blood brain barrier in mice to deliver fluorescently-labeled antibodies. This method will be of interest to researchers evaluating therapeutic approaches for neurodegenerative diseases.
The authors have nothing to disclose.
We acknowledge support by the Estate of Dr Clem Jones AO, the National Health and Medical Research Council of Australia [GNT1145580, GNT1176326], the Metal Foundation, and the State Government of Queensland (DSITI, Department of Science, Information Technology and Innovation).
1,2-distearoyl-sn-glycero-3-phosphocholine | Avanti | 850365C | |
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethyleneglycol)-2000] | Avanti | 880128C | |
AlexaFluor 647 antibody labeling kit | Thermo Fisher | A20186 | |
CD68 antibody | AbD Serotec | MCA1957GA | Use 1:1000 dilution |
Chloroform | Sigma-Aldrich | 372978 | |
Coulter Counter (Multisizer 4e) | |||
Glycerol | Sigma-Aldrich | G5516 | |
Goat anti-rabbit IgG, Alexa Fluor 488 | Thermo FIsher | A-11008 | Use 1:500 dilution |
Goat anti-rabbit IgG, Alexa Fluor 488 | Thermo Fisher | A-11077 | Use 1:500 dilution |
head holder (model SG-4N, Narishige Japan) | |||
Iba1 antibody | Wako | 019-19741 | Use 1:1000 dilution |
Image analysis software | Beckman Coulter | #8547008 | |
Isoflow flow solution | Beckman Coulter | B43905 | |
Near infrared imaging system Odyssey Fc | Licor | 2800-03 | |
Octafluoropropane | Arcadophta | 0229NC | |
Propylene Glycol | Sigma-Aldrich | P4347 | |
TIPS (Therapy Imaging Probe System) | Philips Research | TIPS_007 | |
Bitplane |