Summary

使用硫代巴比妥酸反应物质测定法评估生物样品中的氧化应激

Published: May 12, 2020
doi:

Summary

硫代巴比妥酸反应物质测定的目的是通过使用可见光波长分光光度法在532nm处测量脂质过氧化产物(主要是丙二醛)的产生来评估生物样品中的氧化应激。这里描述的方法可应用于人血清、细胞裂解物和低密度脂蛋白。

Abstract

尽管硫代巴比妥酸反应物质(TBARS)测定的分析特异性和坚固性有限,但已被广泛用作生物体液中脂质过氧化的通用指标。它通常被认为是生物样品中氧化应激水平的良好指标,前提是样品已得到妥善处理和储存。该测定涉及脂质过氧化产物(主要是丙二醛(MDA))与硫代巴比妥酸(TBA)的反应,这导致形成称为TBARS的MDA-TBA2加合物。TBARS产生红粉红色,可以在532nm处进行分光光度法测量。TBARS测定在酸性条件(pH = 4)和95°C下进行。 纯MDA是不稳定的,但这些条件允许MDA双(二甲缩醛)释放MDA,MDA在该方法中用作分析标准。TBARS测定是一种简单的方法,可以在大约2小时内完成。此处详细介绍了测定试剂的制备。注重预算的研究人员可以低成本将这些试剂用于多个实验,而不是购买昂贵的TBARS检测试剂盒,该试剂盒仅允许构建单个标准曲线(因此只能用于一个实验)。该TBARS测定的适用性在人血清,低密度脂蛋白和细胞裂解物中显示。该测定结果一致且可重复,检测限可达到 1.1 μM。提供了分光光度法TBARS测定的使用和解释的建议。

Introduction

脂质过氧化是自由基(如活性氧和活性氮)攻击脂质中的碳 – 碳双键的过程,该过程涉及从碳中抽取氢并插入氧分子。该过程导致复杂产物的混合物,包括脂质过氧自由基和氢过氧化物作为主要产物,以及丙二醛(MDA)和4-羟基壬烯醛作为主要的二次产物1

MDA因其与硫代巴比妥酸(TBA)的易反应而被广泛用于生物医学研究中,作为脂质过氧化的标志物。该反应导致MDA-TBA2的形成,MDA-TBA2是一种共轭物,在532nm处的可见光谱中吸收并产生红粉红色2除MDA外,来自脂质过氧化的其他分子也可以与TBA反应并在532nm处吸收光,从而有助于测量的整体吸收信号。同样,MDA可以与大多数其他主要类别的生物分子反应,可能限制其与TBA34反应的可及性。因此,这种传统的测定方法仅被认为可以测量”硫代巴比妥酸反应物质”或TBARS5

当正确应用和解释时,TBARS测定通常被认为是生物样品中氧化应激总体水平的良好指标6。不幸的是,正如Khoubnasabjafari和其他人所记录的那样,TBARS测定的进行和解释方式往往有助于得出可疑的结论347891011。造成这种情况的原因主要在于与样品相关的预分析变量,以及缺乏检测坚固性,从而禁止在检测方案中发生看似微小的变化,而不会对测定结果进行实质性更改171213

与生物标本处理和储存相关的预分析变量(例如,暂时保持在-20°C的血浆)1415 可对TBARS测定结果产生重大影响1617;如此之多,以至于TBARS测定结果不应在不同实验室之间进行比较,除非有明确的实验室间分析验证数据保证。此建议类似于蛋白质印迹的常用和解释方式。条带密度的比较对于印迹和实验室内研究是有效的,但比较实验室之间的条带密度通常被认为是一种无效的做法。

一些研究人员认为,通过TBARS测定法测量的MDA根本不符合可接受的生物标志物所需的分析或临床标准39101819。事实上,如果该测定法不是在50多年前开发的,它可能不会获得今天的广泛使用和默认接受。尽管还有其他具有更高分析灵敏度、特异性和坚固性的测定方法用于测定氧化应激,但基于532 nm吸光度的 TBARS 测定仍然是迄今为止最常用的测定脂质过氧化的测定方法之一20,从而评估氧化应激。

TBARS测定只能作为昂贵的试剂盒(超过400美元)找到,其中说明书没有提供有关所用试剂的大多数浓度的详细信息。此外,所提供的试剂只能用于一个实验,因为每个试剂盒只能做一个比色标准曲线。对于打算在不同时间点确定几个样品中的氧化水平的研究人员来说,这可能是个问题,因为相同的标准曲线不能多次使用。因此,需要购买多个试剂盒进行多个实验。目前,除非购买昂贵的试剂盒,否则没有有关如何进行TBARS测定的详细方案。过去的一些研究人员模糊地描述了如何进行TBARS测定2122,但文献中既没有关于如何在没有昂贵试剂盒的情况下进行TBARS测定的完全详细的实验方案或全面的视频。

在这里,我们报告了一种详细的,经过分析验证的用于目的的方法,该方法涉及如何以简单,可重复且廉价的方式进行TBARS测定。用Cu(II)离子处理后人血清,HepG2裂解物和低密度脂蛋白的脂质过氧化变化被证明为TBARS测定的说明性应用。结果表明,这种TBARS测定在日常基础上是一致且可重复的。

Protocol

人类血清标本是在IRB批准下根据《赫尔辛基宣言》中表达的原则从同意的志愿者那里获得的。在转移到分析实验室之前,对标本进行编码和去鉴定。 1. 样品制备 七氢呋喃二酮细胞裂解物 将每个烧瓶接种约10×10 6 个HepG2细胞放入16个T75烧瓶中,加入14mL EMEM培养基,补充10%胎牛血清(FBS),并培养细胞2天。 制备 RIPA 缓冲液:在 50 mL 管…

Representative Results

在酸性条件(pH = 4)和95°C下,丙二醛(MDA)双(二甲缩醛)产生MDA23。MDA和密切相关的化学同源物与两个硫代巴比妥酸分子(TBA)反应,产生称为硫代巴比妥酸反应物质(TBARS)的化合物,其呈红粉红色,在532nm处具有吸光度λmax (图1, 图2)。以MDA bis(缩二甲醇)为标准,生成标准曲线(图3, ?…

Discussion

尽管 TBARS 检测方法存在局限性134789101213141519 且不适合在实验室?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这里报告的研究得到了美国国立卫生研究院国家癌症研究所的部分支持。R33 CA217702和最大化学生发展倡议(IMSD)计划。内容完全由作者负责,并不一定代表美国国立卫生研究院的官方观点。

Materials

1x Sterile PBS pH 7.4 1 L VWR, PA 101642–262 cell lysis reagent
50 mL self-standing centrifuge tube Corning, NY CLS430897 General material
96 well plate, Non-Treated, clear, with lid, Non-sterile Thermo Fisher Scientific, MA 280895 To measure absorbance
Amicon Ultra-0.5 100 kD centrifugal spin filter device Fisher Scientific, NH UFC510024 LDL purification
Caps for glass tubes Thermo Fisher Scientific, MA 14-930-15D for TBARS assay
Copper II Chloride SIGMA, MO 222011-250G to induce oxidation
Culture tubes, Disposable, with Screw-Cap Finish, Borosilicate Glass (13 x 100 mm) VWR, PA 53283-800 for TBARS assay
Eagle's Minimum Essential Medium (EMEM) ATCC, VA HB-8065 HepG2 cell media
Eppendorf Safe-Lock Tubes, 1.5 mL eppendorf, NY 22363204 General material
Eppendorf Safe-Lock Tubes, 2.0 mL Genesee Sceitific, CA 22363352 General material
Fetal Bovine Serum US Source Omega Scientific, CA FB-11 for cell culture
Glacial Acetic Acid SIGMA, MO 27225-1L-R TBARS Reagent
Halt Protease Inhibitor Cocktail (100x) Thermo Scientific, MA 87786 cell lysis reagent
HEPES SIGMA, MO H3375-250G LDL solvent
HepG2 Cells ATCC, VA HB-8065 Biological matrix prototype
Hydrocloric acid (HCl) Fisher Scientific, NH A144-212 cell lysis reagent
Legend Micro 17 Centrifuge Thermo Scientific, MA 75002431 General material
Low Density Lipoprotein, Human Plasma Athens Research & Technology, GA 12-16-120412 Biological matrix prototype
Magnetic Stir Bars, Octagon 6-Assortment VWR, PA 58948-025 General material
Malondialdehyde bis (dimethyl acetal) SIGMA, MO 8207560250 TBARS Standard
Multiskan Go Microplate Spectrophotometer Fisher Scientific, NH 51119200 To measure absorbance
NP-40 EMD Millipore Corp, MA 492016-100ML cell lysis reagent
Sodium Chloride SIGMA, MO S7653-1KG cell lysis reagent
Sodium dodecyl sulfate (SDS) SIGMA, MO 436143-100G TBARS Reagent
Sodium hydroxide SIGMA, MO 367176-2.5KG TBARS Reagent
SpeedVac Concentrator Thermo Scientific, MA SC250EXP For concentrating cell lysates
T-75 Flask, Tissue Culture Treated, 250 mL, w/filter cap USA Scientific, FL 658175 cell culture
Thiobarbituric Acid SIGMA, MO T5500-100G TBARS Reagent
TRIS base Fluka, GA 93362 cell lysis reagent
Trypsin (1x) VWR, PA 16777-166 To detach HepG2 cells

References

  1. Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Analytical Biochemistry. 524, 13-30 (2017).
  2. Ohkawa, H., Ohishi, N., Yagi, K. Reaction of linoleic acid hydroperoxide with thiobarbituric acid. Journal of Lipid Research. 19 (8), 1053-1057 (1978).
  3. Khoubnasabjafari, M., Soleymani, J., Jouyban, A. Avoid Using Spectrophotometric Determination of Malondialdehyde as a Biomarker of Oxidative Stress. Biomarkers in Medicine. 12 (6), 551-554 (2018).
  4. Morales, M., Munné-Bosch, S. Malondialdehyde: Facts and artifacts. Plant Physiology. 180 (3), 1246-1250 (2019).
  5. Devasagayam, T. P. A., Boloor, K. K., Ramasarma, T. Methods for estimating lipid peroxidation: An analysis of merits and demerits. Indian Journal of Biochemistry and Biophysics. 40 (5), 300-308 (2003).
  6. Dasgupta, A., Klein, K. Methods for Measuring Oxidative Stress in the Laboratory. Antioxidants in Food, Vitamins and Supplements. , 19-40 (2014).
  7. Wade, C. R., van Rij, A. M. Plasma malondialdehyde, lipid peroxides, and the thiobarbituric acid reaction. Clinical Chemistry. 35 (2), 336-336 (1989).
  8. Khoubnasabjafari, M., Ansarin, K., Jouyban, A. Reliability of malondialdehyde as a biomarker of oxidative stress in psychological disorders. BioImpacts. 5 (3), 123-127 (2015).
  9. Khoubnasabjafari, M., Ansarin, K., Jouyban, A. Comments Concerning “Comparison of Airway and Systemic Malondialdehyde Levels for Assessment of Oxidative Stress in Cystic Fibrosis”. Lung. 193 (5), 867-868 (2015).
  10. Khoubnasabjafari, M., Ansarin, K., Vaez-Gharamaleki, J., Jouyban, A. Comments on “Salivary 8-hydroxy-2-deoxyguanosine, malondialdehyde, vitamin C, and vitamin E in oral pre-cancer and cancer: diagnostic value and free radical mechanism of action”. Clinical Oral Investigations. 20 (2), 395-396 (2016).
  11. Khoubnasabjafari, M., Ansarin, K., Jouyban, A. Comments on “An Investigation into the Serum Thioredoxin Superoxide Dismutase, Malondialdehyde, and Advanced Oxidation Protein Products in Patients with Breast Cancer”. Annals of Surgical Oncology. 24, 573-576 (2017).
  12. Azizi, S., et al. Effects of analytical procedures on the repeatability of malondialdehyde determinations in biological samples. Pharmaceutical Sciences. 23 (3), 193-197 (2017).
  13. Azizi, S., et al. A possible reason for the low reproducibility of malondialdehyde determinations in biological samples. Bioanalysis. 8 (21), 2179-2181 (2016).
  14. Wasowicz, W., Neve, J., Peretz, A. Optimized steps in fluorometric determination of thiobarbituric acid- reactive substances in serum: Importance of extraction pH and influence of sample preservation and storage. Clinical Chemistry. 39 (12), 2522-2526 (1993).
  15. Jentzsch, A. M., Bachmann, H., Fürst, P., Biesalski, H. K. Improved analysis of malondialdehyde in human body fluids. Free Radical Biology and Medicine. 20 (2), 251-256 (1996).
  16. Buege, J. A., Aust, S. D. Microsomal lipid peroxidation. Methods in Enzymology. 52, 302-310 (1978).
  17. Gutteridge, J. M. C. Free-Radical Damage to Lipids, Amino-Acids, Carbohydrates and Nucleic-Acids Determined by Thiobarbituric Acid Reactivity. International Journal of Biochemistry. 14 (7), 649-653 (1982).
  18. Khoubnasabjafari, M., Ansarin, K., Jouyban, A. Salivary malondialdehyde as an oxidative stress biomarker in oral and systemic diseases. J Dent Res Dent Clin Dent Prospects. 10 (2), 71-74 (2016).
  19. Halliwell, B., Whiteman, M. Measuring reactive species and oxidative damage in vivo and in cell culture: How should you do it and what do the results mean. British Journal of Pharmacology. 142 (2), 231-255 (2004).
  20. Lee, R., et al. Evaluating oxidative stress in human cardiovascular disease: methodological aspects and considerations. Current medicinal chemistry. 19 (16), 2504-2520 (2012).
  21. Morel, D. W., Hessler, J. R., Chisolm, G. M. Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid. Journal of Lipid Research. 24 (8), 1070-1076 (1983).
  22. Guzmán-Chozas, M., Vicario-Romero, I. M., Guillén-Sans, R. 2-thiobarbituric acid test for lipid oxidation in food: Synthesis and spectroscopic study of 2-thiobarbituric acid-malonaldehyde adduct. Journal of the American Oil Chemists Society. 75 (12), 1711-1715 (1998).
  23. Shibata, T., et al. Identification of a lipid peroxidation product as a potential trigger of the p53 pathway. Journal of Biological Chemistry. 28 (2), 1196-1204 (2006).
  24. Skoog, D. A., West, D. M., Holler, F. J., Crouch, S. R. Sampling, standardization, and calibration. Fundamentals of Analytical Chemistry. 9th ed. , 153-196 (2014).
  25. Skoog, D. A., Holler, F. J., Crouch, S. R. Introduction. Principles of Instrumental Analysis. 6th ed. , 1-24 (2007).
  26. Seibig, S., Van Eldik, R. Kinetics of [FeII(edta)] Oxidation by Molecular Oxygen Revisited. New Evidence for a Multistep Mechanism. Inorganic Chemistry. 36 (18), 4115-4120 (1997).
  27. Jeffs, J. W., et al. Delta-S-Cys-Albumin: A Lab Test that Quantifies Cumulative Exposure of Archived Human Blood Plasma and Serum Samples to Thawed Conditions. Molecular & Cellular Proteomics. 18 (10), 2121-2137 (2019).
  28. Yagi, K., Armstrong, D. Simple Assay for the Level of Total Lipid Peroxides in Serum or Plasma. Free Radical and Antioxidant Protocols. Methods in Molecular Biology. , 101-106 (1998).
  29. Bernheim, F., Bernheim, M. L. C., Wilbur, K. M. The reaction between thiobarbituric acid and the oxidation products of certain lipides. Journal of Biological Chemistry. 174 (1), 257-264 (1948).
  30. Wilbur, K. M., Bernheim, F., Shapiro, O. W. The thiobarbituric acid reagent as a test for the oxidation of unsaturated fatty acids by various agents. Archives of Biochemistry. 24 (2), 305-313 (1949).
  31. Kwon, T. W., Watts, B. M. Determination of malonaldehyde by ultraviolet spectrophotometry. Journal of Food Science. 28 (6), 627-630 (1963).
  32. Esterbauer, H., Schaur, F. J., Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biology & Medicine. 11 (1), 81-128 (1991).
  33. Dalle-Donne, I., Rossi, R., Colombo, R., Giustarini, D., Milzani, A. Biomarkers of oxidative damage in human disease. Clinical Chemistry. 52 (4), 601-623 (2006).
  34. Jentzsch, A. M., Bachmann, H., Fürst, P., Biesalski, H. K. Improved analysis of malondialdehyde in human body fluids. Free Radical Biology and Medicine. 20 (2), 251-256 (1996).
  35. Jo, C., Ahn, D. U. Fluorometric Analysis of 2-Thiobarbituric Acid Reactive Substances in Turkey. Poultry Science. 77 (3), 475-480 (1998).
  36. Tsikas, D., et al. Development, validation and biomedical applications of stable-isotope dilution GC-MS and GC-MS/MS techniques for circulating malondialdehyde (MDA) after pentafluorobenzyl bromide derivatization: MDA as a biomarker of oxidative stress and its relation to 15(S)-8-iso-prostaglandin F2α and nitric oxide (NO). Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences. 1019, 95-111 (2016).
  37. Barden, A. E., Mas, E., Croft, K. D., Phillips, M., Mori, T. A. Minimizing artifactual elevation of lipid peroxidation products (F 2-isoprostanes) in plasma during collection and storage. Analytical Biochemistry. 449 (1), 129-131 (2014).
  38. Jeffs, J. W., Ferdosi, S., Yassine, H. N., Borges, C. R. Ex vivo instability of glycated albumin: A role for autoxidative glycation. Archives of Biochemistry and Biophysics. 629, 36-42 (2017).
  39. Lee, D. M. Malondialdehyde in Stored Plasma. Biochemical and Biophysical Research Communications. 95 (4), 1663-1672 (1980).
  40. Tsikas, D., et al. Simultaneous GC-MS/MS measurement of malondialdehyde and 4-hydroxy-2-nonenal in human plasma: Effects of long-term L-arginine administration. Analytical Biochemistry. 524, 31-44 (2017).

Play Video

Cite This Article
Aguilar Diaz De Leon, J., Borges, C. R. Evaluation of Oxidative Stress in Biological Samples Using the Thiobarbituric Acid Reactive Substances Assay. J. Vis. Exp. (159), e61122, doi:10.3791/61122 (2020).

View Video