Wir präsentieren einen RT-LAMP-Test für den Nachweis von TiLV in Tilapia-Fischen mit einfachen Instrumenten über einen relativ kurzen Zeitraum im Vergleich zu herkömmlichen RT-PCR-Techniken. Dieses Protokoll kann dazu beitragen, die epidemische Ausbreitung von TiLVD, insbesondere in Entwicklungsländern, zu kontrollieren.
Die Tilapia-Seevirus-Krankheit (TiLVD), eine sich abzeichnende Viruserkrankung in Tilapia, die durch das Tilapia-Seevirus (TiLV) verursacht wird, ist eine anhaltende Herausforderung in der Aquakulturindustrie, die in vielen Teilen der Welt zu einer massenhaften Morbidität und Sterblichkeit von Tilapia geführt hat. Ein wirksamer, schneller und genauer diagnostischer Test für TiLV-Infektionen ist daher notwendig, um die anfängliche Infektion zu erkennen und die Ausbreitung der Krankheit in der Aquakulturlandwirtschaft zu verhindern. In dieser Studie wird eine hochempfindliche und praktische Reverse-Transkriptionsschleifen-Schleife-vermittelte isothermale Amplifikation (RT-LAMP) Methode vorgestellt, um Tilapia-Seevirus im Fischgewebe zu erkennen. Ein Vergleich der RT-qPCR- und RT-LAMP-Assays infizierter Proben ergab positive Ergebnisse in 63 (100%) und 51 (80,95%) Proben. Darüber hinaus ergab eine Analyse nicht infizierter Proben, dass alle 63 nicht infizierten Gewebe sowohl bei den RT-qPCR- als auch bei den RT-LAMP-Assays negative Ergebnisse lieferten. Die Kreuzreaktivität mit fünf Krankheitserregern in Tilapia wurde mit RT-LAMP bewertet, und alle Tests zeigten negative Ergebnisse. Sowohl die Leber- als auch die Schleimproben von infizierten Fischen zeigten vergleichbare Ergebnisse mit der RT-LAMP-Methode, was darauf hindeutet, dass Schleim in RT-LAMP als nicht-tödlicher Test verwendet werden kann, um das Töten von Fischen zu vermeiden. Abschließend zeigten die Ergebnisse, dass der vorgestellte RT-LAMP-Assay eine effektive Methode zum TiLV-Nachweis im Tilapiagewebe innerhalb von 1 h bietet. Die Methode wird daher als Screening-Tool in landwirtschaftlichen Betrieben zur schnellen Diagnose von TiLV empfohlen.
Tilapia See Viruskrankheit (TiLVD) ist eine Viruserkrankung in Tilapia(Oreochromis spp.), die Berichten zufolge Tilapia Todesfälle in vielen Regionen der Welt verursacht, einschließlich Asien1,2, Afrika, und Amerika. Die Krankheit wurde erstmals während der Massensterblichkeit von Tilapia im Jahr 2009 in Israel erkannt, wo die Zahl der wilden Tilapia im Kinneret-See dramatisch von 257 auf 8 Tonnen proJahr2 sank. Die Krankheit wird durch das Tilapia-Seevirus (TiLV) verursacht, das der Familie Amnoonviridae als neue Gattung Tilapinevirus und einer neuen Art Tilapia Tilapinevirus3zugeordnet wurde. Die genetische Charakterisierung von TiLV zeigte, dass es sich bei dem Virus um ein neuartiges umhülltes, negativ-sinnliches, einsträngiges RNA-Virus handelt, das 10 Segmente hat, die 10 Proteine1,2,4kodieren. Verschiedene Tilapia-Arten der Gattung Sarotherodon, Oreochromis, und Tilapine und andere warme Wasserfische (z.B. Riesen-Gourami (Osphronemus goramy)) haben sich als anfällig für TiLV2,5erwiesen. Derzeit verbreitet sich dieses Virus weiterhin weltweit, möglicherweise durch die Bewegung von infizierten lebenden Fischen6,7, während das Risiko einer viralen Übertragung über gefrorene Tilapia oder sein Produkt begrenzt ist8. Eine erhebliche Sterblichkeit aufgrund einer TiLV-Infektion hat das Potenzial, erhebliche negative wirtschaftliche Auswirkungen auf die Tilapia-Industrie zu haben. Zum Beispiel wurden die wirtschaftlichen Auswirkungen des Sommersterblichkeitssyndroms in Ägypten im Zusammenhang mit einer TiLV-Infektion auf 100MillionenUS-Dollar 9 berechnet. Daher ist es wichtig, eine schnelle und angemessene Diagnosemethode zu entwickeln, um die Bekämpfung dieser Krankheit in Fischfarmen zu erleichtern.
Bisher basiert die Diagnose TiLVD auf molekularen Assays, viraler Isolation und Histopathologie. Für die TiLV-Diagnose10,11wurden verschiedene PCR-Protokolle und Primer entwickelt. Zum Beispiel wurde eine SYBR-Grün-basierte Reverse-Transkriptions-quantitative PCR-Methode (RT-qPCR) mit der Empfindlichkeit entwickelt und validiert, nur zwei Kopien/L des Virus zuerkennen. Andere PCR-Methoden für die TiLV-Erkennung sind TaqMan quantitative PCR11, RT-PCR2, geschachtelte RT-PCR12und semi-nested RT-PCR13. Diese Methoden erfordern jedoch ausgeklügelte Laborausrüstung und relativ lange Zeiträume, um aufgrund der Komplexität der Reaktionen Ergebnisse zu erzielen, was sie für die Feldanwendung ungeeignet macht.
Der schleifenvermittelte isotherme Amplifikationstest (LAMP) ist ein schneller, einfacher und praktischer For-Field-Anwendung14,15. Die Technik verwendet das Prinzip einer Strangverschiebungsreaktion, während die Amplifikationsreaktion unter isothermen Bedingungen ohne einen ausgeklügelten und teuren Thermischen Cycler14,15läuft. Daher werden verstärkte LAMP-Produkte oder RT-LAMP-Produkte in leiterartigen Bändern mit Agarose-Gel-Elektrophorese mit einem fluoreszierenden Fleck entweder zur sicheren Visualisierung von DNA oder RNA14 oder zur Beobachtung mit bloßem Auge auf das Vorhandensein von Trübung oder einem weißen Niederschlag16,17,18analysiert. Aus diesen Gründen wurde diese Technik für den Nachweis verschiedener Fischpathogene vor Ort17,18,19,20,21,22,23,24,25,26,27. Der Zweck dieser Studie war es, einen schnellen, empfindlichen und genauen RT-LAMP-Test für die TiLV-Erkennung zu etablieren. Der RT-LAMP-Test bietet ein Screening auf TiLV in Fischproben innerhalb von 30 min. Die Technik kann für die Diagnose und Überwachung von TiLVD angewendet werden.
Die Aquakulturindustrie ist ständig von Virusinfektionen bedroht, die erhebliche wirtschaftliche Verluste verursachen9,23,28. Zum Beispiel stellt die aufstrebende TiLV eine große Bedrohung für Tilapia produzierende Länder in vielen Teilen der Welt1,6,9. Bisher gab es keine spezifischen Therapeutika zur Verhinderung von TiLVD. Währe…
The authors have nothing to disclose.
Das Projekt wird vom Thailand Research Fund (TRF) Förderstück RDG6050078 und dem Center for Advanced Studies for Agriculture and Food, Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand im Rahmen des Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, Ministry of Education, Thailand, finanziert. Die Forschung wird zum Teil durch das Graduate Program Stipendium der Graduate School, Kasetsart University, unterstützt. Die Autoren danken Dr. Kwanrawee Sirikanchana für die Erzählung des Videos und Piyawatchara Sikarin für die Bearbeitung des Videos.
Tissue collection: | |||
Clove oil | Better Pharma | N/A | |
Tricaine methanesulfonate | Sigma-Aldrich | E10521 | An alternative option to clove oil |
RNA extraction: | |||
Acid guanidinium-phenol based reagent (TRIzol reagent) | ThermoFisher Scientific Corp. | 15596026 | |
Acid guanidinium-phenol based reagent (GENEzol reagent) | Geneaid | GZR100 | |
Direct-zol RNA Kit: | Zymo Research | R2071 | |
– Direct-zol RNA PreWash | |||
– RNA Wash Buffer | |||
– DNase/RNase-free water | |||
– Zymo-spin IIICG columns | |||
– Collection Tubes | |||
RT-LAMP: | |||
1x SD II reaction buffer | Biotechrabbit | BR1101301 | |
Magnesium sulfate (MgSO4) | Sigma-Aldrich | 7487-88-9 | |
dNTP set | Bioline | BIO-39053 | |
Betaine | Sigma-Aldrich | B2629 | |
Calcein mixture | Merck | 1461-15-0 | |
Bst DNA polymerase | Biotechrabbit | BR1101301 | |
AMV reverse transcriptase | Promega | M510A | |
Nuclease-free water | Invitrogen | 10320995 | |
Elite dry bath incubator, single unit | Major Science | EL-01-220 | |
Gel electrophoresis: | |||
Agarose | Vivantis Technologies | PC0701-500G | |
Tris-borate-EDTA (TBE) buffer | Sigma-Aldrich | SRE0062 | |
Tris-acetic-EDTA (TAE) buffer: | |||
– Tris | Vivantis Technologies | PR0612-1KG | |
– Acetic acid (glacial), EMSURE | Merck Millipore | 1000632500 | |
– Disodium Ethylenediaminetetraacetate dihydrate (EDTA), Vetec | Sigma-Aldrich | V800170-500G | |
Neogreen | NeoScience Co., Ltd. | GR107 | |
DNA gel loading dye (6X) | ThermoFisher Scientific Corp. | R0611 | |
DNA ladder and markers | Vivantis Technologies | PC701-100G | |
Mini Ready Sub-Cell GT (Horizontal electrophoresis system) | Bio-Rad | 1704487 | |
PowerPac HC power supply | Bio-Rad | 1645052 | |
Gel Doc EZ System | Bio-Rad | 1708270 | |
UV sample tray | Bio-Rad | 1708271 | |
NαBI imager | Neogene Science | ||
cDNA synthesis: | |||
ReverTra Ace qPCR RT Kit | Toyobo | FSQ-101 | |
Viva cDNA Synthesis Kit | Vivantis Technologies | cDSK01 | An alternative option for cDNA synthesis |
NanoDrop2000 (microvolume spectrophotometer) | ThermoFisher Scientific Corp. | ND-2000 | |
T100 Thermal Cycler | Bio-Rad | 1861096 | |
RT-qPCR: | |||
iTaq Universal SYBR Green Supermix | Bio-Rad | 1725120 | |
Nuclease-free water, sterile water | MultiCell | 809-115-CL | |
8-tube PCR strips, white | Bio-Rad | TLS0851 | |
Flat PCR tube 8-cap strips, optical | Bio-Rad | TCS0803 | |
CFX96 Touch Thermal Cycler | Bio-Rad | 1855196 | |
General equipment and materials: | |||
Mayo scissors | N/A | ||
Forceps | N/A | ||
Vortex Genie 2 (vortex mixer) | Scientific Industries | ||
Microcentrifuge LM-60 | LioFuge | CM610 | |
Corning LSE mini microcentrifuge | Corning | 6765 | |
Pipettes | Rainin | Pipete-Lite XLS | |
QSP filtered pipette tips | Quality Scientific Plastics | TF series | |
Corning Isotip filtered tips | Merck | CLS series | |
Nuclease-free 1.5 mL microcentrifuge tubes, NEST | Wuxi NEST Biotechnology | 615601 |