在压电基板上生产数字电极传感器(镍氢锂)时,介绍了两种制造技术,即升降和湿蚀刻,这种传感器广泛用于产生表面声波,现在在微到纳米级流体中具有广泛的效用。作为生产的电极被显示,以有效地诱导兆赫顺序雷利表面声波。
通过小规模的声学驱动操作流体和颗粒有助于芯片实验室应用的快速增长。兆赫阶表面声波(SAW)器件在其表面产生巨大的加速度,高达108 m/s2,进而导致许多观测到的观测效果来定义同源学:声流和声辐射力。这些效应已用于微尺度的粒子、细胞和流体处理,甚至在纳米尺度上也是如此。在本文中,我们明确演示了硅线锂氮化装置的两种主要制造方法:逐步描述升空和湿蚀技术的细节。详细显示了沉积在基板上的电极模式的代表性结果以及表面生成的SAW性能。还介绍了制造技巧和故障排除。此程序为未来微流体应用的高频 SAW 器件制造和集成提供了实用协议。
依靠众所周知的逆压电效应,原子偶极子产生与电场应用相对应的应变,压电晶体如锂牛锂锂锂(LN)、锂钛锂锂锂TaO3 3(LT),可用作机电传感器,用于微尺度应用1、2、3、4、5、6。2,3,4,5,61通过在 10 – 1000 MHz 下产生高达 1 nm 的位移, SAW 驱动的振动克服了传统超声的典型障碍:小加速度、长和大器件尺寸。操纵流体和悬浮粒子的研究最近加速,最近大量和可获取的评论77,8,9,10。8,9,10
制造SAW集成微流体器件需要制造压电基板上的电极(数字传感器(IDT)11,以产生11SAW。当连接到交流的电气输入时,梳形手指在基板上产生压缩和张力。SAW设备的制造已经出现在许多出版物中,无论是使用升降紫外线光刻与金属溅射或湿蚀刻工艺10。然而,缺乏制造这些设备的知识和技能是许多研究团体进入同流体学的主要障碍,即使在今天也是如此。对于升空技术12、13、14,在表面上创建具有反图案的牺牲层(光阻),当目标材料(金属)沉积在整个晶圆上时,它可以到达所需区域的基板,然后采用”升空”步骤去除剩余的光阻。12,13,14相比之下,在湿蚀刻工艺15、16、17、1816,17,18中,金属首先沉积在晶圆上,然后用直接图案在金属上产生光刻,以保护所需的区域免受金属蚀刻的”蚀刻”。15
在最常用的设计中,直 IDT、SAW 器件谐振频率的波长由手指对的周期性定义,其中手指宽度和手指之间的间距均为 /419。为了平衡电流传输效率和基板的质量载荷效应,压电材料上沉积的金属厚度被优化为SAW波长20的1%左右。如果沉积的金属不足,可能导致手指过早衰竭。另一方面,由于质量加载效应,过厚的金属薄膜会导致 IDT 谐振频率降低,并可能从 IDT 产生无意的声学腔,从而隔离它们从周围基板产生的声波。因此,选择的光阻和紫外线照射参数在升空技术中有所不同,具体取决于 SAW 器件的不同设计,尤其是频率。在这里,我们详细介绍了在双面抛光 0.5 mm 厚的 128° Y 旋转切割 LN 晶圆上生产 100 MHz SAW 生成装置的升降过程,以及制造相同设计的 100 MHz 器件的湿蚀刻工艺。我们的方法提供微流体系统,能够调查各种物理问题和生物应用。
由这两种方法制造的SAW器件能够在水面上产生有用的移动波,这些方法支持更复杂的过程来产生其他设计。由于沉积在上面的金属的质量载荷效应,谐振频率通常略低于设计值。然而,仍有一些要点值得讨论,以避免问题。
升空方法
光刻胶的选择很重要。有可能使用正光电阻进行制造,尽管如此,这将更加困难。由于未暴露的光刻剂溶解,基板上留下的部分?…
The authors have nothing to disclose.
作者感谢加州大学和圣地亚哥分校的NANO3设施为支持这项工作提供资金和设施。这项工作部分在UCSD的圣地亚哥纳米技术基础设施(SDNI)进行,这是国家纳米技术协调基础设施的成员,由国家科学基金会(授予ECCS-1542148)支持。这里介绍的工作得到了W.M.Keck基金会的研究资助。作者还感谢海军研究办公室(通过格兰特12368098)对这项工作的支持。
Absorber | Dragon Skin, Smooth-On, Inc., Macungie, PA, USA | Dragon Skin 10 MEDIUM | |
Amplifier | Mini-Circuits, Brooklyn, NY, USA | ZHL–1–2W–S+ | |
Camera | Nikon, Minato, Tokyo, Japan | D5300 | |
Chromium etchant | Transene Company, INC, Danvers, MA, USA | 1020 | |
Developer | Futurrex, NJ, USA | RD6 | |
Developer | EMD Performance Materials Corp., Philidaphia, PA, USA | AZ300MIF | |
Dicing saw | Disco, Tokyo, Japan | Disco Automatic Dicing Saw 3220 | |
Gold etchant | Transene Company, INC, Danvers, MA, USA | Type TFA | |
Hole driller | Dremel, Mount Prospect, Illinois | Model #4000 | 4000 High Performance Variable Speed Rotary |
Inverted microscope | Amscope, Irvine, CA, USA | IN480TC-FL-MF603 | |
Laser Doppler vibrometer (LDV) | Polytec, Waldbronn, Germany | UHF-120 | 4” double-side polished 0.5 mm thick 128°Y-rotated cut lithium niobate |
Lithium niobate substrate | PMOptics, Burlington, MA, USA | PWLN-431232 | |
Mask aligner | Heidelberg Instruments, Heidelberg, Germany | MLA150 | Fabrication process is performed in it. |
Nano3 cleanroom facility | UCSD, La Jolla, CA, USA | ||
Negative photoresist | Futurrex, NJ, USA | NR9-1500PY | |
Oscilloscope | Keysight Technologies, Santa Rosa, CA, USA | InfiniiVision 2000 X-Series | |
Positive photoresist | AZ1512 | Denton Discovery 18 Sputter System | |
Signal generator | NF Corporation, Yokohama, Japan | WF1967 multifunction generator | Wafer Dipper 4" |
Sputter deposition | Denton Vacuum, NJ, USA | Denton 18 | |
Teflon wafer dipper | ShapeMaster, Ogden, IL, USA | SM4WD1 |