Qui, dimostriamo un processo di colata di soluzione semplice e a basso costo per migliorare la compatibilità tra il riempitivo e la matrice di nanocompositi a base di polimeri utilizzando riempitivi BaTiO3 modificati in superficie, che possono migliorare efficacemente la densità energetica dei compositi.
In questo lavoro, è stato sviluppato un metodo semplice, a basso costo e ampiamente applicabile per migliorare la compatibilità tra i riempitivi in ceramica e la matrice polimerica aggiungendo 3-aminopropyltriethoxysilane (KH550) come agente di accoppiamento durante il processo di fabbricazione dei nanocompositi BaTiO 3-P(VDF-CTFE) attraverso la fusione della soluzione.3 I risultati mostrano che l’uso di KH550 può modificare la superficie dei nanofiller ceramici; pertanto, è stata ottenuta una buona wettability sull’interfaccia ceramica-polimero, e le migliori prestazioni di stoccaggio dell’energia sono state ottenute da una quantità adeguata dell’agente di accoppiamento. Questo metodo può essere utilizzato per preparare compositi flessibili, che è altamente auspicabile per la produzione di condensatori di pellicola ad alte prestazioni. Se nel processo viene utilizzata una quantità eccessiva di agente di accoppiamento, l’agente di accoppiamento non collegato può partecipare a reazioni complesse, il che porta a una diminuzione della costante dielettrica e ad un aumento della perdita dielettrica.
I dielettri applicati nei dispositivi di stoccaggio dell’energia elettrica sono principalmente caratterizzati utilizzando due parametri importanti: la costante dielettrica (zr) e la forza di rottura (Eb)1,2,3. In generale, i materiali organici come il polipropilene (PP) presentano un’alta Eb (102 MV/m) e una bassar (per lo più <5)4,5,6 mentre materiali inorganici, in particolare ferroelettrici come BaTiO3, presentano un altor (103-104) e un basso E b (100 MV/m)6,7,8. In alcune applicazioni, la flessibilità e la capacità di resistere a impatti meccanici elevati sono importanti anche per la fabbricazione di condensatori dielettri4. Pertanto, è importante sviluppare metodi per la preparazione di compositi dielettrico a base polimerica, in particolare per lo sviluppo di metodi a basso costo per creare 0-3 nanocompositi ad alteprestazioni con alti r ed Eb9,10,11,12,13,14,15,16,17,18. A tale scopo, i metodi di preparazione basati su matrici di polimeri ferroelettrici come il PVDF del polimero polare e i suoi copolimeri correlati sono ampiamente accettati a causa del loro più alto , r (10)4,19,20.r In questi nanocompositi, le particelle con alta er, soprattutto ceramiche ferroelettriche, sono state ampiamente utilizzate come riempitivi6,20,21,22,23,24,25.
Quando si sviluppano metodi per la produzione di compositi ceramico-polimero, vi è una preoccupazione generale che le proprietà dielettriche possono essere influenzate in modo significativo dalla distribuzione dei riempitivi26. L’omogeneità dei compositi dielettrico non è determinata solo dai metodi di preparazione, ma anche dalla wettability tra la matrice e i filler27. È stato dimostrato da molti studi che la non uniformità dei compositi ceramico-polimerici può essere eliminata da processi fisici come il rivestimento dello spin28,29 e la pressatura a caldo19,26. Tuttavia, nessuno di questi due processi modifica la connessione superficiale tra riempitivi e matrici; pertanto, i compositi preparati con questi metodi sono ancora limitati nel miglioramento di , Red Eb19,27. Inoltre, dal punto di vista produttivo, i processi scomodi sono indesiderabili per molte applicazioni perché possono portare a processi di fabbricazione molto piùcomplessi 28,29. A questo proposito, è necessario un metodo semplice ed efficace.
Attualmente, il metodo più efficace per migliorare la compatibilità dei nanocompositi ceramico-polimero si basa sul trattamento delle nanoparticelle ceramiche, che modifica la chimica della superficie tra riempitivi e matrici30,31. Recenti studi hanno dimostrato che gli agenti di accoppiamento possono essere facilmente rivestiti su nanoparticelle ceramiche e modificare efficacemente la wettability tra riempitivi e matrici senza influenzare il processo di colata32,33,34,35,36. Per la modifica della superficie, è ampiamente accettato che per ogni sistema composito vi sia una quantità adeguata di agente di accoppiamento, che corrisponde ad un aumento massimo della densità di stoccaggiodell’energia 37; l’eccesso di accoppiamento in compositi può comportare un calo delle prestazioni dei prodotti36,37,38. Per i compositi dielettrico che utilizzano riempitivi ceramici di dimensioni nanometriche, si ipotizza che l’efficacia dell’agente di accoppiamento dipenda principalmente dalla superficie dei riempitivi. Tuttavia, la quantità critica da utilizzare in ogni sistema di dimensioni nanometriche deve ancora essere determinata. In breve, sono necessarie ulteriori ricerche per utilizzare agenti di accoppiamento per sviluppare semplici processi per la produzione di nanocompositi ceramico-polimero.
In questo lavoro, BaTiO3 (BT), il materiale ferroelettrico più ampiamente studiato con alta costante dielettrica, è stato utilizzato come riempitivi, e il P(VDF-CTFE) 91/9 mol% copolymer (VC91) è stato utilizzato come matrice polimerica per la preparazione di compositi ceramico-polimero. Per modificare la superficie dei nanofiller BT, il 3-aminopropyltriethoxysilane (KH550) disponibile in vendita è stato acquistato e utilizzato come agente di accoppiamento. La quantità critica del sistema nanocomposito è stata determinata attraverso una serie di esperimenti. Un metodo semplice, a basso costo e ampiamente applicabile è dimostrato per migliorare la densità energetica dei sistemi compositi di nano-dimensioni.
Come discusso in precedenza, il metodo sviluppato da questo lavoro potrebbe migliorare con successo le prestazioni di stoccaggio dell’energia dei nanocompositi ceramico-polimero. Per ottimizzare l’effetto di tale metodo, è fondamentale controllare la quantità di agente di accoppiamento utilizzato nella modifica ceramica-superficie. Per le nanoparticelle ceramiche con un diametro di 200 nm, è stato determinato sperimentalmente che il 2 wt% di KH550 potrebbe portare ad una densità massima di energia. Per altri sistemi …
The authors have nothing to disclose.
Questo lavoro è stato sostenuto dalla Taiyuan University of Science and Technology Scientific Research Initial Funding (20182028), la fondazione di dottorato della provincia di Shanxi (20192006), la Natural Science Foundation of Shanxi Province (201703D111003), il progetto Science and Technology Major della provincia di Shanxi (MC2016-01) e il Progetto U610256 sostenuto dalla National Natural Science Foundation of China.
3-Aminopropyltriethoxysilane (KH550) | Sigma-Aldrich | 440140 | Liquid, Assay: 99% |
95 wt.% ethanol-water | Sigma-Aldrich | 459836 | Liquid, Assay: 99.5% |
BaTiO3 nanoparticles | US Research Nanomaterials | US3830 | In a diameter of about 200 nm |
Ferroelectric tester | Radiant | Precision-LC100 | |
Glass substrates | Citoglas | 16397 | 75 x 25 mm |
Gold coater | Pelco | SC-6 | |
High voltage supplier | Trek | 610D | 10 kV |
Impedance analyzer | Keysight | 4294A | |
N, N dimethylformamide | Fisher Scientific | GEN002007 | Liquid |
P(VDF-CTFE) 91/9 mol.% copolymer | |||
Scanning Electron Microscopy (SEM) | JEOL | JSM-7000F | |
Vacuum oven | Heefei Kejing Materials Technology Co, Ltd | DZF-6020 |