Plant morphogenic genes can be used to improve genetic transformation of recalcitrant genotypes. Described here is an Agrobacterium-mediated genetic transformation (QuickCorn) protocol for three important public maize inbred lines.
Demonstrated here is a detailed protocol for Agrobacterium-mediated genetic transformation of maize inbred lines using morphogenic genes Baby boom (Bbm) and Wuschel2 (Wus2). Bbm is regulated by the maize phospholipid transferase gene (Pltp) promoter, and Wus2 is under the control of a maize auxin-inducible (Axig1) promoter. An Agrobacterium strain carrying these morphogenic genes on transfer DNA (T-DNA) and extra copies of Agrobacterium virulence (vir) genes are used to infect maize immature embryo explants. Somatic embryos form on the scutella of infected embryos and can be selected by herbicide resistance and germinated into plants. A heat-activated cre/loxP recombination system built into the DNA construct allows for removal of morphogenic genes from the maize genome during an early stage of the transformation process. Transformation frequencies of approximately 14%, 4%, and 4% (numbers of independent transgenic events per 100 infected embryos) can be achieved for W22, B73, and Mo17, respectively, using this protocol.
Transformation is a basic tool for evaluating foreign gene expression in maize and producing genetically modified corn lines for both research and commercial purposes. Access to high throughput transformation can facilitate the increased need for maize molecular and cellular biology studies1. The ability to genetically transform crop species is vital to both public and private laboratories. This allows for both fundamental understanding of gene regulation mechanisms as well as crop improvement on a global scale to support an ever-growing population.
The discovery that immature embryos from maize could be used for the production of regenerable callus originated in 19752. Since this revelation, most scalable maize transformation protocols have required callus formation and selection prior to regeneration3. During the process of genetic transformation, Agrobacterium-infected or biolistic-bombarded immature embryos are cultured on media for embryogenic callus induction. Induced calli are then cultured on selective media (e.g., containing an herbicide) so that only transformed callus pieces are able to survive. These herbicide-resistant putative transgenic calli are bulked up and regenerated into plants. While this method is effective, the process is long and labor-intensive, and it can take upwards of 3 months to complete4. More importantly, conventional maize transformation protocols possess a much larger limitation, that is, only a limited number of maize genotypes can be transformed5,6.
Lowe et al.7,8 previously reported a "QuickCorn" transformation method that not only greatly reduced the duration of the transformation process but also expanded the list of transformable genotypes. The QuickCorn method utilizes maize orthologs (Zm-Bbm and Zm-Wus2) of the Arabidopsis transcription factors BABY BOOM (BBM)9 and WUSCHEL (WUS)10. When incorporated in the transformation vector system, these genes work synergistically to stimulate embryogenic growth7.
The QuickCorn protocol described in this work was based on the protocol in Jones et al11, which was a further improvement of the method reported by Lowe et al7,8. In the present study, an Agrobacterium strain LBA4404(Thy-) harboring a binary vector construct PHP81430 (Figure 1) and accessory plasmid PHP7153912 are used for transformation. The T-DNA of PHP81430 contains the following molecular components. (1) The transformation selective marker gene Hra expression cassette. The maize Hra (Zm-Hra) gene is a modified acetolactase synthase (ALS) gene that is tolerant to ALS-inhibiting herbicides such as sulfonylureas and imidazolinones13,14. The Zm-Hra gene is regulated by the sorghum ALS promoter8 and potato proteinase inhibitor II (pinII) terminator15. The T-DNA also contains (2) an expression cassette possessing the transformation screenable marker gene ZsGreen. This green fluorescent protein gene ZsGreen from Zoanthus sp. reef coral16 is regulated by a sorghum ubiquitin promoter/intron and rice ubiquitin terminator.
Additionally, the T-DNA contains (3) the morphogenic gene Bbm expression cassette. Bbm is a transcription factor associated with embryo development9,17. Bbm is regulated by the maize phospholipid transferase protein (Pltp) promoter8 and rice T28 terminator18. Zm-Pltp is a gene with strong expression in the embryo scutellar epithelium, silk hairs, and leaf subsidiary cells (flanking the guard cells), low expression in reproductive organs, and no expression in roots8. It also contains (4) the morphogenic gene Wus2 expression cassette. Wus2 is another transcription factor associated with the maintenance of the apical meristem19. Zm-Wus2 is under the control of a maize auxin-inducible promoter (Zm-Axig1)20 and maize In2-1 terminator21. Finally, the T-DNA contains (5) the cre–loxP recombination system. The cre recombinase gene22 is under the control of maize heat shock protein 17.7 (Hsp17.7)23 promoter and potato pinII terminator. Two loxP sites (in the same orientation)24 flank four gene expression cassettes including ZsGreen, cre, Bbm and Wus2.
Because the presence of the morphogenic genes is not desired for plant maturity and subsequent progeny, the heat-induced cre-loxP recombination system was built into the T-DNA to remove morphogenic genes from the maize genome to allow normal callus regeneration and plant development. Upon heat treatment, the expression of CRE protein removes all transgenes except for the Hra selection gene. Successful transformants should be herbicide-resistant but ZsGreen-negative. To further enhance transformation frequency, the Agrobacterium strain also harbors an additional accessory plasmid (PHP71539) that has extra copies of Agrobacterium virulence (vir) genes12.
The QuickCorn method is different from conventional maize transformation protocols, as it does not involve a callus induction step during transformation. During the first week after infection with Agrobacterium, somatic embryos develop on the scutellar epithelium of the infected immature embryos. The embryos are then transferred to a medium with hormones that encourage embryo maturation and shoot formation. Rapidly transferring the somatic embryos onto maturation/shoot formation medium skips the traditional callus stage previously used for maize transformation and permits direct generation of T0 plants8. Compared to previously published maize transformation methods6, the QuickCorn method is faster, more efficient, and less genotype-dependent. Using this method, rooted plants are typically ready to transfer to soil in just 5-7 weeks, rather than the three or more months required by traditional protocols. The purpose of this article is to provide an in-depth description and demonstration of the method, allowing for easier replication in a laboratory setting typically found in most academic institutions.
1. Growth media preparation
2. Growing donor plants and harvesting immature ears
3. Preparing Agrobacterium suspension culture for infection
NOTE: The Agrobacterium strain LBA4404(Thy-) containing PHP81430 (Figure 1) and PHP7153912 is stored as a glycerol stock at -80 °C. These materials can be obtained from Corteva Agriscience through a Material Transfer Agreement. LBA4404(Thy-) is an auxotrophic strain that needs thymidine supplied in the growth media. The primary utility of the auxotroph Agro strain is for biocontainment purposes. It has the additional benefit of reducing Agro overgrowth. The auxotrophic Agro strain does not grow without supplemental thymidine. Nevertheless, thymidine can (presumably) be supplied by dying plant tissue in the culture. Therefore, there is still a need to provide an antibiotic in the medium to completely control the auxotrophic Agro. However, it will be easier to control due to compromised growth of the auxotrophic strain in the absence of thymidine.
4. Embryo dissection, infection, and co-cultivation
5. Selection, heat treatment, and regeneration
6. Transplanting to the greenhouse and the production of T1 seeds
Demonstrated here is a step-by-step protocol for Agrobacterium-mediated genetic transformation of three public maize inbred lines (B73, Mo17, and W22) that have been significant in the field of maize genetics. Transformation of the three inbred lines could not be achieved using conventional maize transformation protocols5. Figure 1 and Figure 2 show the construct and starting materials, respectively, used here. Ears are generally harvested 9-12 days after pollination. IZEs with lengths ranging between 1.5-2.0 mm are the best explants for transformation for this protocol (Figure 2).
Eight days after infection, ZsGreen-expressing somatic embryos were visualized under the GFP channel of a fluorescent microscope (Figure 3). Infected IZEs were subjected to heat treatment 8 days after infection (steps 5.1 and 5.2). This treatment induced the expression of CRE recombinase that excised the Bbm, Wus2, cre, and ZsGreen expression cassettes flanked between the two loxP sites (Figure 1). The heat-treated tissues were then cultured on shoot formation medium containing the herbicide imazapyr for selection of transformed tissue after morphogenic gene removal.
Proliferating tissues with maturing embryos or shoot buds that were resistant to imazapyr were observed around 3-4 weeks after infection (Figure 4). Some imazapyr-resistant tissues were negative for ZsGreen, suggesting that cre-mediated excision likely occurred in these tissues (Figure 4). After the tissues were moved to rooting medium and light incubation, shoots started to develop (Figure 5). Healthy and vigorous growing shoots with well-developed roots were harvested (Figure 5). Some tissues appeared to have multiple shoots (Figure 5E,F,G). This type of "grassy" regenerant may be due to clonal plants having identical transgene integration patterns. Molecular biological analysis is required to genotype these plants.
All three public inbred lines responded well using this protocol as well as the construct used in this work. W22 produced the highest frequency of imazapyr-resistant shoots, with a frequency of approximately 14% (about 14 transgenic shoots per 100 infected immature embryos). Both B73 and Mo17 produced about 4% transgenic shoots. These frequencies indicate all transgenic shoots, including both plants carrying the morphogenic genes and plants with the morphogenic gene removed by the CRE-mediated excision.
Figure 1: Schematic representation of the T-DNA region of the binary plasmid PHP81430. RB = right T-DNA border; loxP = CRE recombinase target site; Axig1pro:Wus2 = maize auxin-inducible promoter (Zm-Axig1) + Zm-Wus2 + maize In2-1 terminator; Pltppro:Zm-Bbm = maize phospholipid transferase protein (Zm-Pltp) promoter + Zm-Bbm + rice T28 terminator (Os-T28); Hsppro:cre = maize heat shock protein 17.7 promoter (Zm-Hsp17.7) + cre recombinase gene + potato proteinase inhibitor II (pinII) terminator; Ubipro:ZsGreen = sorghum ubiquitin promoter/intron (Sb-Ubi) + green fluorescent protein ZsGreen gene + rice ubiquitin terminator (Os-Ubi); Hra cassette = sorghum acetolactase synthase (Sb-Als) promoter + maize Hra (Zm-Hra) gene + pinII terminator; LB = left T-DNA border; colE1, replication origin of plasmid ColE125; SpecR = spectinomycin resistant gene aadA1 from Tn21 for bacterium selection26; Rep A,B,C = replication origin from pRiA4 of Agrobacterium rhizogenes27. Please click here to view a larger version of this figure.
Figure 2: Starting materials. B73 ears harvested 12 days post-pollination (A). Immature embryos of B73 (B), Mo17 (C), and W22 (D). Please click here to view a larger version of this figure.
Figure 3: Tissue development on resting medium 1 week post-infection. Embryos (8 days post-infection) under a florescence microscope (GFP filter) showing GFP expressing somatic embryos of Mo17 (A) and W22 (B). Developing tissue (B73) under bright-field (C) and GFP filter (D). Please click here to view a larger version of this figure.
Figure 4: Tissue development on maturation medium with selection. A W22 maturation plate (A). Developing tissue (Mo17, 15 days post-infection) under bright-field (B) and GFP filter (C). Developing tissue (Mo17, 28 days post-infection) under bright-field (D) and GFP filter (E). Arrows point to regenerating tissues that are lacking GFP expression, suggesting the excision of ZsGreen gene between the loxP sites after heat-induced CRE protein activity. Please click here to view a larger version of this figure.
Figure 5: Tissue development on rooting media. Shoots of W22 (A), B73 (B), and Mo17 (C,D). Event with multiple shoots (grassy regenerants) of B73 (E) and W22 (F,G). Shoots with roots of B73 (H) and W22 (I). Please click here to view a larger version of this figure.
Table 1: Media compositions for maize transformation. Please click here to view this table (Right click to download).
Traditional protocols for maize transformation follow the paradigm of isolating immature zygotic embryos to produce transgenic callus tissue, which is regenerated into fertile plants4,6. While this is effective, callus-based protocols can be time-consuming, and it often takes up to 3 months for the tissue culture process to produce plants. What makes the method presented here significant is that it is callus-free, efficient, quick, and allows for the regeneration of T0 plants in roughly half the timeframe. It also appears to be less genotype-dependent and can thus be effective for most publicly available inbreds8,11.
While all steps should be effectively followed, correct growth media preparation is imperative. Growth media components need to be added at the correct stages, both pre- and post- autoclave, to ensure that the plant material receives the proper concentration of chemicals. This will ensure that sensitive compounds like antibiotics do not break down. It is also important that plant material is placed on the correct growth medium at each stage, as indicated in the protocol. Not placing material on the proper growth medium can result in material death. In addition, placing too many embryos or developing tissues on plates should be avoided. While placing twice as many tissue pieces may save the cost of chemicals and Petri dishes (and even incubator space), the growth of tissue in overcrowded plates can be seriously inhibited. While performing the infection, it should be ensured that the optical density of the Agrobacterium suspension is appropriate. If the bacterial suspension density is too low, proper infection may not occur.
The quality of starting materials is essential for success in transformation protocols. Ears used for embryo dissection must be healthy, meaning that the plant that produces them is healthy. They also must possess an adequate seed set and be pest- and disease-free. Also, old Agrobacterium should not be used. The "mother" plate should be no more than 2 weeks old. After this point, a new "mother" plate should be streaked to begin new experiments.
While this method has been shown to be less genotype-dependent, it cannot be assumed that all lines will be equally successful. There can still be variation amongst lines as well as differences in success based upon the construct being used. Ear-to-ear variability is also unavoidable when working with immature embryos, so ideally experiments should use multiple ears to account for this. In this work, inbred W22 performed the best, with over ~14% transformation frequency, followed by B73 and Mo17 (~4% each). Lowe et al.8 reported using the QuickCorn protocol for B73 and Mo17 transformation. In this work, the transformation frequencies ranged from 9%-50% for B73 and 15%-35% for Mo17.
One possibility for the lower transformation frequencies for B73 and Mo17 observed in this work may be attributed to seasonal ear quality fluctuation. Another difference between this work and that of Lowe et al.8 is that different vector constructs were used here. In Lowe's work, morphogenic genes were not removed from the transformed plants but rather developmentally silenced in the later stages. In this work, the morphogenic genes were removed 8 days after the infection. It is possible that B73 and Mo17 may need a longer presence of Bbm/Wus2 for the development of somatic embryos.
Using this method, there is a possibility of obtaining non-transgenic escape plants, multimeric insertions, and unexcised transgenes. These plants will not have a noticeably different phenotype, so detection by PCR is required to determine whether a plant is transgenic. To accomplish this, PCR primers within the excised region and primers flanking the excised region can be employed. Multiple independent transformations can also produce plants from the same immature embryo, making determination of total independent transformant recovery rate difficult. Our standard has been to calculate a transformation rate based on sampling one plant from each immature embryo that produced plants and dividing this by the number of embryos infected. This method almost certainly underestimates the actual number of independent events recovered as plantlets. Discrimination between independent events from the same embryo requires sequencing border regions around transgenes, and this will be prohibitively expensive and time-consuming for most applications; though, there may be cases in which these data are useful.
This method of tissue culture transformation has proven to be very effective, but problems can still occur. If plant material is not responding, it is possible that there is an issue with the particular inbred line, suggesting that variables such as growth media composition and timing of subculturing require adjustments. Another variable is proper vector design and accurate vector construction, if the original vector is altered. There can also be issues with imazapyr sensitivity, as some lines are more sensitive than others, and the concentration of imazapyr may need to be adjusted to achieve successfully transformed plants.
Over the last 30 years, maize tissue culture and transformation protocols have changed and progressed; and it is believed that this shortened protocol will further this progression. This method is effective for academic settings because it is less time-consuming than traditional methods. In addition, it does not demand highly trained operators, making it more amenable to widespread distribution when compared to traditional methods. In the future, this method can be combined with new technologies such as genome engineering.
The authors have nothing to disclose.
We thank the Corteva greenhouse team for providing maize immature ears, the Corteva media prep lab for providing assistance in making media, Ning Wang from Corteva for help with the Agrobacterium construct, and Keunsub Lee from Iowa State University for assistance. This project was partially supported by National Science Foundation Plant Genome Research Program Grant 1725122 and 1917138 to K.W., by Predictive Plant Phenomics Research Traineeship Program (National Science Foundation Grant DGE-1545453) to J.Z., by the USDA NIFA Hatch project #IOW04341, by State of Iowa funds, and by Crop Bioengineering Center of Iowa State University.
2,4-D | Millipore Sigma | D7299 | |
6-Benzylaminopurine (BAP) | Millipore Sigma | B3408 | |
Acetosyringone | Millipore Sigma | D134406 | |
Agar | Millipore Sigma | A7921 | |
Aluminum foil | To cover the flask | ||
Ammonium Sulfate | Millipore Sigma | A4418 | |
Analytical balance | To weigh small quantities of chemicals | ||
Autocalve | Primus (Omaha, NE) | PSS5-K | To autoclave media and tools |
Bacterial culture loop (10 µl) | Fisher scientific | 22-363-597 | Collects Agrobacterium from plate to transfer to liquid |
Bactoagar | BD bioscience | 214030 | |
Beakers (1 L, 2 L, 4 L) | To mix the chemicals for media | ||
Benomyl | Millipore Sigma | #45339 | |
Bleach (8.25% Sodium Hypochlorite) | Clorox | For seed sterilization | |
Boric Acid | Millipore Sigma | B6768 | |
Calcium Chloride Dihydrate | Millipore Sigma | C7902 | |
Carbenicillin | Millipore Sigma | C3416 | |
Casein Hydrolysate | Phytotech | C184 | |
Cefotaxime | Phytotech | C380 | |
Conical tube (50 mL) | Fisher scientific | 06-443-19 | Contain liquid medium and Agro suspension |
Cuvette (Semi-micro) | Fisher scientific | 14955127 | To hold liquid for measuring OD |
Dicamba | Phytotech | D159 | |
Digital hygrometer | Checking temperature and humidity for heat treatment | ||
EDTA, Disodium Salt, Dihydrate | Millipore Sigma | 324503 | |
Eppendorf tube (2.0 mL) | ThermoFischer Scientific | AM12475 | |
Eriksson's Vitamins | Phytotech | E330 | 1000x in liquid |
Ethanol (70%) | Sterilizing tools and surfaces | ||
Ferrous Sulfate Heptahydrate | Millipore Sigma | F8263 | |
Fertilizer, Osmocote Plus 15-9-12 | ICL Specialty Fertilizers (Dublin, OH) | A903206 | Fertilizer |
Flask (2 L) | Pyrex | 10-090E | To autoclave media and tools |
Flats (Standard 1020, open w/holes, 11"W x 21.37"L x 2.44"D) | Hummert International (Earth City, Mo) | 11300000 | Tray to hold soil and pot insert, fits Humidome |
Forceps (fine-tipped and large) | Fine for handling embryos; larger for large plant materials and use as ear holders | ||
Gentamicin | Gold Biotechnologies | G-400 | |
Glass bottle (1 L) | Pyrex | 06-414-1D | To autoclave medium |
Graduated cylinder | To adjust volume of media | ||
Imazapyr | Millipore Sigma | 37877 | |
Incubator, 20 °C | Percival Scientific | Model I-36NL | To grow mother plate and incubate embryos during Agro infection |
Incubator, 27 °C | Percival Scientific | Model I-36NL | To grow co-cultivation plate and maize embryo culture |
Incubator, 45 °C | Heat shock treatment | ||
Insert TO Standard, pots | Hummert International (Earth City, Mo) | 11030000 | For transplanting plants from rooting to soil, fits flat and Humidome |
Laminar flow hood | Maintains sterile conditions | ||
L-proline | Phytotech | P698 | |
Magnesium Sulfate Heptahydrate | Millipore Sigma | M1880 | |
Maize inbred seed B73 | U.S National Plant Germplasm | id=47638 | |
Maize inbred seed Mo17 | U.S National Plant Germplasm | id=15785 | |
Maize inbred seed W22 | U.S National Plant Germplasm | id=61755 | |
Manganese Sulfate Monohydrate | Millipore Sigma | M7899 | |
Milli-Q Water purification systems | Millipore sigma | MILLIQ | For tissue culture grade water |
MS Basal Medium | Millipore Sigma | M5519 | |
MS Basal Salt Mixture | Millipore Sigma | M5524 | |
N6 Basal Salt Mixture | Millipore Sigma | C1416 | |
Paperclips, non-skid | Holding on tassel bags | ||
Peptone | BD bioscience | 211677 | |
Petri dish (100×15 mm) | Fisher scientific | FB0875713 | For bacteria culture medium |
Petri dish (100×25 mm) | Fisher scientific | FB0875711 | For the plant tissue culture medium |
pH meter | Fisher scientific | AB150 | To adjust pH of media |
Pipette (1 mL) | ThermoFischer Scientific | 4641100N | |
Plastic Boxes | The Container Store | 10048430 | For tissue culture storage and incubation |
Plastic humidy dome (Humi-Dome) | Hummert International (Earth City, Mo) | 14385100 | Plastic cover for soil flat |
Potassium Iodide | Millipore Sigma | 793582 | |
Potassium Nitrate | Millipore Sigma | P8291 | |
Potassium Phosphate Monobasic | Millipore Sigma | P5655 | |
Scale | To weigh chemicals for media | ||
Scalpel Blade (No. 11, 4 cm) | Thermo Scientific | 3120030 | remove the top of the kernel crowns for embryo dissection |
Scalpel handle | Holding scalpel blades | ||
Schenk & Hildebrandt Vitamin (S&H vitamin) | Phytotech | S826 | 100x powder |
Scissors | Cutting ear shoots | ||
Shoot bag (Canvasback- semi-transparent) | Seedburo (Des Plaines, IL) | S26 | Semi-transparent bag to cover ear shoots |
Silver Nitrate | Millipore Sigma | S7276 | |
Sodium Molybdate Dihydrate | Millipore Sigma | M1651 | |
Soiless substrate LC1 | SunGro Horticulture (Agawam, Ma) | #521 | For growing maize plants |
Spatula (Double Ended Micro-Tapered) | Fischer Scientific | 2140110 | Dissecting embryos from kernels |
Spatula (with spoon) | Fisher scientific | 14-375-10 | To measure chemicals for media |
Spectinomycin | Millipore Sigma | S4014 | |
Spectrophotometer (Genesys 10S UV-Vis) | Thermo Scientific | 840-300000 | Measure OD of Agro suspension |
Stirring bar | Fisher scientific | 14-513-67 | To mix media |
Stirring hotplates | To mix media | ||
Syringe (without needle, 60 mL) | Fisher scientific | 14-823-43 | For filter sterilization |
Syringe filter (0.22 µm) | Fisher scientific | 09-720-004 | For filter sterilization |
Tassel bag (Canvasback- brown) | Seedburo (Des Plaines, IL) | T514 | Bag to cover tassels of non-transgenic plants |
Tassel bag (Canvasback-green stripe) | Seedburo (Des Plaines, IL) | T514G | Bag to cover tassels of transgenic plants |
Thiamine HCl | Phytotech | T390 | |
Thidiazuron | Phytotech | T888 | |
Thymidine | Millipore Sigma | T1895 | |
Timentin | Phytotech | T869 | |
Tween 20 | Fisher Scientific | Cas #9005-64-5 | surfactant |
Vortex Genie 2 | Scientific Industries | SI0236 | Homogenizes liquids (Agro suspension) |
Water bath (large – Precision model 186) | Fisher scientific | any that can fit 4+ 2L flasks and reach 55 °C | Keeps autoclaved media at optimal temperature |
Weigh dish | Fisher scientific | 08-732-112 | To measure chemicals for media |
Weighing paper | Fisher scientific | 09-898-12A | To measure chemicals for media |
Yeast Extract | Fisher Scientific | BP14222 | |
Zeatin | Millipore Sigma | Z0164 |