Summary

神经冠状原脂肪衍生干细胞的分离、培养和异位诱导,来自围阴脂肪组织

Published: March 02, 2020
doi:

Summary

我们提出了从Wnt-1 Cre+/-的围阴脂肪组织中提取神经峰衍生的干细胞(NCADSCs)的分离、培养和异位诱导方案;罗莎26RFP/+小鼠。NCADSCs 是 ADSC 的一个容易获取的来源,用于在体外模拟脂肪发生或脂肪发生。

Abstract

血管周围过多的脂肪组织(血管内脂肪组织,也称为PVAT)与心血管疾病的高风险有关。从不同的脂肪组织衍生的ADSCs表现出明显的特征,而来自PVAT的ADSC的特征并不明显。在最近的一项研究中,我们报告说,围阴弓脂肪组织(PAAT)中的一些ADSCs从神经峰细胞(NcCs)下降,这是一种来自外端的迁移细胞的瞬态群体。

在本文中,我们描述了从Wnt-1 Cre+/-的PAAT中分离红色荧光蛋白(RFP)标记的NCC的协议;Rosa26RFP/+小鼠在体外诱导其异体分化。简单地说,基质血管分数(SVF)与PAAT酶分离,RFP+神经波峰衍生的ADSCs(NCADSCs)通过荧光活化细胞分选(FACS)分离。NCADSC 分化成棕色和白色的脂肪细胞,可以冷冻保存,并保留其可吸波潜力的 +3⁄5 段落。我们的协议可以从PVAT生成大量的ADSCs,用于在体外模拟PVAT腺化或脂肪发生。因此,这些NCADSCs可以为研究PVAT分化所涉及的分子开关提供有价值的系统。

Introduction

全世界肥胖症的患病率正在上升,这增加了患心血管疾病和糖尿病等相关慢性病的风险。PVAT环绕血管,是血管功能中涉及的内分泌和副项的主要来源。临床研究表明,高PVAT含量是心血管疾病2、3的独立危险因素,其病理功能取决于组成脂肪衍生干细胞(ADSCs)4的表型。

虽然ADSC细胞系,如鼠3T3-L1,3T3-F442A和OP9是研究腺生成或脂肪发生5的有用细胞模型,但细胞系和原细胞之间,腺化的调控机制不同。基质血管细胞部分(SVF)中的ADSCs直接从脂肪组织分离出来,并诱导分化成腺细胞,最有可能在体内重述脂肪发生和脂肪发生6。然而,ADSCs的脆弱性、浮力以及大小和免疫表型的变化使得它们直接隔离具有挑战性。此外,不同的分离程序也会显著影响这些细胞7的表型和增生电位能力,从而强调需要一种维持ADSC完整性的协议。

脂肪组织通常被归类为形态和功能上截然不同的白色脂肪组织(WAT),或棕色脂肪组织(BAT)8,其中含有不同的ADSCs9。虽然在以前的研究中,从围肠和肠下WAT分离的ADSCs在以前的研究中具有特征9,10,11,12,较少知道从PVAT的ADSC,主要由BAT13组成。

在最近的一项研究中,我们发现,围阴弓脂肪组织(PAAT)中一部分常驻ADSC来自神经峰细胞(NcCs),这是一种来自前体14、15的迁移祖细胞的瞬态种群。Wnt1-Cre转基因小鼠用于追踪神经峰细胞发育16、17。我们越过Wnt1-Cre+小鼠与罗莎26RFP/+小鼠生成Wnt-1 Cre[/-;Rosa26RFP/+小鼠,其中NcCs及其后代被标记与红色荧光蛋白(RFP),并很容易跟踪在体内和体外15。在这里,我们描述了一种从小鼠PAAT中分离神经峰衍生ADSCs(NC衍生ADSCs,或NCADSCs)的方法,并诱导NcADSCs分化成白色脂肪细胞或棕色腺细胞。

Protocol

动物规程经上海交通大学动物护理委员会审查批准。 1. 生成 Wnt-1 Cre+/-;罗莎26RFP/+小鼠 交叉 Wnt-1 Cre+/-小鼠16与 Rosa26RFP/+小鼠18生成 Wnt-1 Cre+/-;罗莎26RFP/+小鼠。在25°C和45%湿度的无病原体设施中,在12小时光/暗循环下,将小鼠在4~8周大。 2. PaAT的解剖 <p class="jove…

Representative Results

使用上述协议,我们从 5⁄6 Wnt-1 Cre+/-获得 ±0.5±1.0 x 106 ADSCs;Rosa26RFP/+小鼠(48周大,雄性或雌性)。 图1显示了从小鼠中收集PAAT的流程图。NCADSCs的形态与其他小鼠脂肪组织的ADSC相似。培养的NCADSC在培养7~8天后达到80-90%的汇合,而NCADSC具有扩大的成纤维细胞样形态(图2B,C)。 <p class="jove_cont…

Discussion

在这项研究中,我们提出了一种可靠的方法,用于从Wnt-1 Cre+/-的PVAT中提取的NCADSCs的分离、培养和异位诱导;Rosa26RFP/+转基因小鼠,旨在生产RFP+ADSC。以前的报告显示,在NCADSCs和非NCADSCs22中,一般多能性等位干细胞(MSCs)标记的表达没有显著差异,而且NCADSCs具有很强的在体外15、22、23体细胞中分化成腺?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

国家重点研发项目(2018YFC1312504),国家自然科学基金(81970378、81670360、81870293)和上海市科委(17411971000,17140902402)为本研究提供资金.

Materials

4% PFA BBI life sciences E672002-0500 Lot #: EC11FA0001
Agarose ABCONE (China) A47902 1% working concentration
Anti-cebp/α ABclonal A0904 1:1000 working concentration
Anti-mouse IgG, HRP-linked CST 7076 1:5000 working concentration
Anti-perilipin Abcam AB61682 1 μg/mL working concentration; lot #: GR66486-54
Anti-PPARy SANTA CRUZ sc-7273 0.2 μg/mL working concentration
Anti-rabbit IgG, HRP-linked CST 7074 1:5000 working concentration
Anti-β-Tubulin CST 2146 1:1000 working concentration
BSA VWR life sciences 0332-100G 50 mg/mL working concentration; lot #: 0536C008
Collagenase, Type I Gibco 17018029
Dexamethasone Sigma-Aldrich D4902 0.1 µM working concentration
Erythrocyte Lysis Buffer Invitrogen 00-4333
FBS Corning R35-076-CV 50 mg/mL working concentration; lot #: R2040212FBS
HBSS Gibco 14025092
HDMEM Gelifesciences SH30243.01 Lot #: AD20813268
IBMX Sigma-Aldrich I7018 0.5 mM working concentration
Insulin Sigma-Aldrich I3536 1 μg/mL working concentration
Microsurgical forceps Suzhou Mingren Medical Equipment Co.,Ltd. (China) MR-F201A-1
Microsurgical scissor Suzhou Mingren Medical Equipment Co.,Ltd. (China) MR-H121A
Oil Red O solution Sigma-Aldrich O1516 0.3% working concentration
PBS (Phosphate buffered saline) ABCONE (China) P41970
Penicillin-Streptomycin Gibco 15140122
PrimeScript RT reagent Kit TAKARA RR047A Lot #: AK4802
RNeasy kit TAKARA 9767 Lot #: AHF1991D
Rosa26RFP/+ mice JAX No.007909 C57BL/6 backgroud; male and female
Rosiglitazone Sigma-Aldrich R2408 1 μM working concentration
Standard forceps Suzhou Mingren Medical Equipment Co.,Ltd. (China) MR-F424
Surgical scissor Suzhou Mingren Medical Equipment Co.,Ltd. (China) MR-S231
SYBR Premix Ex Taq TAKARA RR420A Lot #: AK9003
Triiodothyronine Sigma-Aldrich T2877 10 nM working concentration
Wnt1-Cre+;PPARγflox/flox mice JAX No.009107 C57BL/6 backgroud; male and female

References

  1. Afshin, A., et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. New England Journal of Medicine. 377 (1), 13-27 (2017).
  2. Brown, N. K., et al. Perivascular adipose tissue in vascular function and disease: a review of current research and animal models. Arteriosclerosis, Thrombosis, and Vascular Biology. 34 (8), 1621-1630 (2014).
  3. Britton, K. A., et al. Prevalence, distribution, and risk factor correlates of high thoracic periaortic fat in the Framingham Heart Study. Journal of the American Heart Association. 1 (6), 004200 (2012).
  4. Police, S. B., Thatcher, S. E., Charnigo, R., Daugherty, A., Cassis, L. A. Obesity promotes inflammation in periaortic adipose tissue and angiotensin II-induced abdominal aortic aneurysm formation. Arteriosclerosis, Thrombosis, and Vascular Biology. 29 (10), 1458-1464 (2009).
  5. Farmer, S. R. Transcriptional control of adipocyte formation. Cell Metabolism. 4 (4), 263-273 (2006).
  6. Aune, U. L., Ruiz, L., Kajimura, S. Isolation and differentiation of stromal vascular cells to beige/brite cells. Journal of Visualized Experiments. (73), e50191 (2013).
  7. Ruan, H., Zarnowski, M. J., Cushman, S. W., Lodish, H. F. Standard isolation of primary adipose cells from mouse epididymal fat pads induces inflammatory mediators and down-regulates adipocyte genes. Journal of Biological Chemistry. 278 (48), 47585-47593 (2003).
  8. Cinti, S. Between brown and white: novel aspects of adipocyte differentiation. Annals of Medicine. 43 (2), 104-115 (2011).
  9. Van Harmelen, V., Rohrig, K., Hauner, H. Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects. Metabolism. 53 (5), 632-637 (2004).
  10. Rodeheffer, M. S., Birsoy, K., Friedman, J. M. Identification of white adipocyte progenitor cells in vivo. Cell. 135 (2), 240-249 (2008).
  11. Church, C. D., Berry, R., Rodeheffer, M. S. Isolation and study of adipocyte precursors. Methods in Enzymology. 537, 31-46 (2014).
  12. Chen, Y., et al. Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues. Journal of Visualized Experiments. (109), e53886 (2016).
  13. Ye, M., et al. Developmental and functional characteristics of the thoracic aorta perivascular adipocyte. Cellular and Molecular Life Sciences. 76 (4), 777-789 (2019).
  14. Medeiros, D. M. The evolution of the neural crest: new perspectives from lamprey and invertebrate neural crest-like cells. Wiley Interdisciplinary Reviews. Developmental Biology. 2 (1), 1-15 (2013).
  15. Fu, M., et al. Neural Crest Cells Differentiate Into Brown Adipocytes and Contribute to Periaortic Arch Adipose Tissue Formation. Arteriosclerosis, Thrombosis, and Vascular Biology. , (2019).
  16. Danielian, P. S., Muccino, D., Rowitch, D. H., Michael, S. K., McMahon, A. P. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Current Biology. 8 (24), 1323-1326 (1998).
  17. Tamura, Y., et al. Neural crest-derived stem cells migrate and differentiate into cardiomyocytes after myocardial infarction. Arteriosclerosis, Thrombosis, and Vascular Biology. 31 (3), 582-589 (2011).
  18. Madisen, L., et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nature Neuroscience. 13 (1), 133-140 (2010).
  19. Tan, P., Pepin, &. #. 2. 0. 1. ;., Lavoie, J. L. Mouse Adipose Tissue Collection and Processing for RNA Analysis. Journal of Visualized Experiments. (131), e57026 (2018).
  20. Basu, S., Campbell, H. M., Dittel, B. N., Ray, A. Purification of specific cell population by fluorescence activated cell sorting (FACS). Journal of Visualized Experiments. (41), e1546 (2010).
  21. Gupta, R. K., et al. Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metabolism. 15 (2), 230-239 (2012).
  22. Sowa, Y., et al. Adipose stromal cells contain phenotypically distinct adipogenic progenitors derived from neural crest. PLoS One. 8 (12), 84206 (2013).
  23. Billo, N., et al. The generation of adipocytes by the neural crest. Development. 134 (12), 2283-2292 (2007).
  24. Thelen, K., Ayala-Lopez, N., Watts, S. W., Contreras, G. A. Expansion and Adipogenesis Induction of Adipocyte Progenitors from Perivascular Adipose Tissue Isolated by Magnetic Activated Cell Sorting. Journal of Visualized Experiments. (124), e55818 (2017).

Play Video

Cite This Article
Qi, Y., Miao, X., Xu, L., Fu, M., Peng, S., Shi, K., Li, J., Ye, M., Li, R. Isolation, Culture, and Adipogenic Induction of Neural Crest Original Adipose-Derived Stem Cells from Periaortic Adipose Tissue. J. Vis. Exp. (157), e60691, doi:10.3791/60691 (2020).

View Video