Apresentamos um ensaio para a fácil quantificação de metais introduzidos em amostras preparadas usando cromatografia de afinidade metálica imobilizada. O método utiliza hidroxinaphthol azul como o indicador de metal colorimétrico e um espectrômetro UV-Vis como o detector.
A contaminação de enzimas com metais lixiviadas a partir de colunas de cromatografia de afinidade metálica imobilizada (IMAC) representa uma grande preocupação para os enzimologistas, já que muitas das cações comuns de di e trivalente usadas em resinas iMAC têm um efeito inibitório sobre as enzimas. No entanto, a extensão da lixiviação metálica e o impacto de vários reagentes de eluting e redução são mal compreendidos em grande parte devido à ausência de protocolos simples e práticos de quantificação metálica de transição que usam equipamentos normalmente disponíveis laboratórios de bioquímica. Para resolver esse problema, desenvolvemos um protocolo para quantificar rapidamente a quantidade de contaminação de metal em amostras preparadas usando imac como uma etapa de purificação. O método utiliza o azul hidroxinaphthol (HNB) como um indicador colorimétrico para o conteúdo de caminação metálica em uma solução de amostra e espectroscopia UV-Vis como um meio de quantificar a quantidade de metal presente, na faixa de nanomolar, com base na mudança no espectro HNB em 647 nm. Embora o conteúdo metálico em uma solução tenha sido historicamente determinado usando espectroscopia de absorção atômica ou técnicas de plasma indutivamente acopladas, esses métodos exigem equipamentos especializados e treinamento fora do escopo de um laboratório típico de bioquímica. O método proposto aqui fornece uma maneira simples e rápida para que os bioquímicos determinem o índice do metal das amostras que usam o equipamento e o conhecimento existentes sem sacrificar a exatidão.
Desde a sua criação por Porath e colegas de trabalho1, a cromatografia de afinidade metálica imobilizada (IMAC) tornou-se um método de escolha para separar rapidamente as proteínas com base em sua capacidade de se relacionar com íons de metal de transição, como Zn2+, Ni2+,2+, e Co2+. Isso é mais comumente feito através de etiquetas de poli-histidina projetadas e agora é uma das técnicas de purificação cromatográfica mais comuns para o isolamento de proteínas recombinantes2. O IMAC também encontrou aplicações além da purificação de proteínarecombinante como uma forma de isolar quinolonas, tetraciclinas, aminoglicosídeos, macrolídeos e β-lacmas para análise de amostras alimentares3 e como um passo na identificação de marcadores de proteína sangue-soro para cânceres de fígado e pâncreas4,5. Não surpreendentemente, IMAC também se tornou um método de escolha para o isolamento de uma série de enzimas bioenergéticas nativas6,7,8,9,10. No entanto, a implementação bem-sucedida desses métodos de purificação para estudos sobre proteínas bioenergéticas enzimáticas ativas depende da presença de níveis insignificantes de caations metálicas lixiviadas da matriz da coluna para o eluate. As caations metálicas divalentes comumente usadas no IMAC têm significado biológico patológico conhecido, mesmo em baixas concentrações11,12. O efeito fisiológico desses metais é mais pronunciado em sistemas bioenergéticos, onde podem ser letais como inibidores da respiração celular ou fotossíntese13,14,15. Questões semelhantes são inevitáveis para a maioria das classes de proteínas onde metais contaminantes residuais podem interferir com as funções biológicas de uma proteína ou caracterização com técnicas bioquímicas e biofísicas.
Enquanto os níveis de contaminação de metal condições oxidantes e o uso de imidazol como eluante são tipicamente baixos16,os isolamentos proteicos realizados na presença de agentes redutores de cisteína (DTT, β-mercaptoethanol, etc.) ou com quelantes mais fortes como histidina17,18 ou ácido etilediátetraa (EDTA) resultam em níveis muito mais altos de contaminação de metal19,20. Da mesma forma, uma vez que os íons metálicos nas resinas iMAC são frequentemente coordenados por grupos carboxílicos, as eluções de proteínas realizadas em condições ácidas também são susceptíveis de ter níveis muito mais elevados de contaminação de metais. O conteúdo metálico em soluções pode ser avaliado usando espectroscopia de absorção atômica (AAS) e espectrometria de massa plasmática (ICP-MS) indutivamente acoplada até um limite de detecção na faixa ppb-ppt21,22,23,24. Infelizmente, a AAS e o ICP-MS não são meios realistas para detecção em um laboratório de bioquímica tradicional, pois esses métodos exigiriam acesso a equipamentos e treinamento especializados.
Trabalhos anteriores de Brittain25,26 investigaram o uso de hidroxinaphthol azul (HNB) como forma de identificar a presença de metais de transição em solução. No entanto, houve várias contradições internas nos dados20 e essas obras não ofereceram um protocolo adequado. Estudos de Temel et al.27 e Ferreira et al.28 expandiram o trabalho de Brittain com a HNB como um potencial indicador de metal. No entanto, Temel desenvolveu um protocolo que faz uso de AAS para análise de amostras, usando HNB apenas como agente quelante. O estudo de Ferreira utilizou a mudança nos espectros de absorção de HNB a 563 nm, região dos espectros HNB de corlivre que se sobrepõe fortemente aos espectros de complexos de metais HNB no pH 5.7, tornando a sensibilidade ao ensaio bastante baixa, bem como resultando em afinidade de ligação metálica relativamente fraca20. Para abordar problemas em nosso próprio laboratório com a lixiviação Ni2+ da IMAC, expandimos o trabalho feito pela Brittain25,26 e Ferreria28 para desenvolver um ensaio fácil capaz de detectar níveis de nanomolar de vários metais de transição. Mostramos que a HNB liga níquel e outros comuns para metais IMAC com afinidades de ligação subnamolar e formam 1:1 complexo em uma ampla gama de valores de pH20. O ensaio aqui relatado é baseado nestes resultados e utiliza mudanças do absorveance no espectro de HNB em 647 nm para o quantification do metal. O ensaio pode ser realizado na faixa de pH fisiológico usando amortecedores comuns e instrumentação encontrada em um laboratório típico de bioquímica usando detecção colorimétrica e quantificação de complexos de corante metálico e a mudança associada na absorção do corante livre quando se liga ao metal.
A detecção colorimétrica de metais usando HNB fornece uma maneira simples de quantificar o grau de contaminação por proteínas por íons metálicos de transição de resinas IMAC. Como estabelecemos em Ref. 20, o Ni2+ se liga à HNB com 1:1 stoichiometria e a constante de dissociação para as mudanças complexas de Ni-HNB com pH. No entanto, o complexo Kd está na faixa sub-nM para todos os valores recomendados (7-12) de pH. Em termos práticos, isso significa que todos os Ni2 + em …
The authors have nothing to disclose.
Este material é baseado no trabalho apoiado pela National Science Foundation Grant MCB-1817448 e por um prêmio do Thomas F. e Kate Miller Jeffress Memorial Trust, Bank of America, Trustee e doador especificado Hazel Thorpe Carman e George Gay Carman Confiar.
2xYT broth | Fisher Scientific | BP9743-500 | media for E.coli growth |
HEPES, free acid | BioBasic | HB0264 | alternative buffer |
HisPur Ni-NTA resin | Thermo Scientific | 88222 | |
Hydroxynaphthol blue disoidum salt | Sigma-Aldrich | 219916-5g | |
Imidazole | Fisher Scientific | O3196-500 | |
Imidazole | BioBasic | IB0277 | |
MOPS, free acid | BioBasic | MB0360 | alternative buffer |
Sodium chloride | Fisher Scientific | S271-500 | |
Sodium phosphate | Fisher Scientific | S369-500 | alternative buffer |
Tricine | Gold Bio | T870-100 | |
Tris base | Fisher Scientific | BP152-500 | |
Triton X-100 | Sigma-Aldrich | T9284-500 |