우리는 고정화 금속 친화성 크로마토그래피를 사용하여 제조 된 샘플에 도입 된 금속의 쉬운 정량화를위한 분석법을 제시합니다. 이 방법은 하이드록시나프톨 블루를 비대금속 표시기로 사용하고 UV-Vis 분광광도계를 검출기로 사용합니다.
고정화 금속 친화성 크로마토그래피(IMAC) 컬럼에서 침출된 금속으로 효소를 오염시키는 것은 IMAC 수지에 사용되는 많은 일반적인 디-및 트라이발렌트 양이온이 효소에 억제 효과를 미치기 때문에 효소 학자들에게 큰 우려를 불러옵니다. 그러나, 금속 침출의 정도와 다양한 용출 및 환원 시약의 영향은 일반적으로 사용 가능한 장비를 사용하는 간단하고 실용적인 전이 금속 정량화 프로토콜의 부재로 인해 상당 부분에서 제대로 이해되지 않습니다. 생화학 실험실. 이 문제를 해결하기 위해 당사는 정화 단계로 IMAC를 사용하여 제조된 시료의 금속 오염량을 신속하게 정량화하는 프로토콜을 개발했습니다. 이 방법은 647 nm에서 HNB 스펙트럼의 변화에 기초하여, 나노 몰 범위로 존재하는 금속의 양을 정량화하는 수단으로 샘플 용액 및 UV-Vis 분광법의 금속 양이온 함량에 대한 색인식 지표로 hydroxynaphthol 블루 (HNB)를 사용합니다. 용액의 금속 함량은 역사적으로 원자 흡수 분광법 또는 유도결합 플라즈마 기술을 사용하여 결정되었지만, 이러한 방법은 일반적인 생화학 실험실의 범위를 벗어난 특수 장비 및 교육이 필요합니다. 여기에 제안 된 방법은 생명 화학사가 정확성을 희생하지 않고 기존 장비와 지식을 사용하여 샘플의 금속 함량을 결정하는 간단하고 빠른 방법을 제공합니다.
Porath와 동료1에의해 그것의 개시부터, 고정화금속 선호도 크로마토그래피 (IMAC)는 Zn2+ 및Ni2+ 및Cu2+및Co2+와 같은 전이금속 이온과 결합하는 그들의 기능에 근거를 둔 단백질을 빨리 분리하는 선택의 방법이 되었습니다. 이것은 가장 일반적으로 엔지니어링 된 폴리 히스티딘 태그를 통해 수행되며 재조합 단백질 2의 격리를위한 가장 일반적인 크로마토 그래피 정제 기술 중하나입니다. IMAC는 또한 퀴놀론, 테트라사이클린, 아미노글리코시드, 마크로라이드 및 β-락탐을 식품 시료 분석3및 간 및 췌장암에 대한 혈액 혈청 단백질 마커를 식별하는 단계로서 재조합 단백질 정제를 넘어서는 응용 을 발견했다4,5. 당연히, IMAC는 또한 다수의 네이티브 바이오 에너지 효소6,7,8,9,10의격리를 위한 선택의 방법이 되었다. 그러나, 효소 활성 생체 에너지 단백질에 대한 연구를 위한 이러한 정제 방법의 성공적인 구현은 컬럼 매트릭스로부터 용출된 금속 양이온의 무시할 수 있는 수준의 존재에 의존한다. IMAC에서 일반적으로 사용되는 이원성 금속 양이온은 낮은농도11,12에서도병리학적 생물학적 유의성을 알려져 있다. 이 금속의 생리적 효과는 세포 호흡 또는 광합성의 억제제로서 치명적임을 입증 할 수있는 생체 에너지 시스템에서 가장 두드러집니다13,14,15. 잔류 오염 물질 금속이 생화학 및 생화학 적 기술로 단백질의 생물학적 기능 이나 특성 분석을 방해할 수 있는 단백질 클래스의 대부분에 대 한 유사한 문제는 피할 수 있다.
산화 조건 하에서 및 이미다졸을 용리제로 사용하는 금속 오염 수준은 일반적으로낮지만,시스테인 환원제 (DTT, β-mercaptoethanol 등) 또는 히스티딘17, 18 또는 에틸렌디아미네테트라아세트산(EDTA)10,18 또는 에틸렌디아미네테트라아세트산(EDTA) 10보다 더 강한 킬레이터가 있는 상태에서 수행되는 단백질 분리는 일반적으로 낮습니다. 마찬가지로, IMAC 수지의 금속 이온은 카르복실 체에 의해 자주 조정되기 때문에 산성 조건하에서 수행되는 단백질 용출은 훨씬 더 높은 수준의 금속 오염을 가질 가능성이 높습니다. 용액의 금속 함량은 원자 흡수 분광법(AAS) 및 유도결합 플라즈마 질량 분광법(ICP-MS)을 사용하여 ppb-ppt 범위21, 22,23,24에서검출한계까지 평가될 수 있다. 불행히도, AAS 및 ICP-MS는 이러한 방법이 전문 장비 및 교육에 대한 액세스를 필요로하기 때문에 기존의 생화학 실험실에서 검출을위한 현실적인 수단이 아닙니다.
브리튼25,26에 의한 이전 작업은 용액에서 전이 금속의 존재를 식별하는 방법으로 하이드록시나프톨 블루 (HNB)의 사용을 조사했다. 그러나 데이터20에는 몇 가지 내부 모순이 있었고 이러한 작업은 적절한 프로토콜을 제공하지 못했습니다. Temel외. 27 및 페레이라 외28에 의한 연구는 잠재적 인 금속 지표로 HNB와 브리튼의 작업에 확장. 그러나 Temel은 HNB를 킬레이트화 제로만 사용하여 샘플 분석을 위해 AAS를 사용하는 프로토콜을 개발했습니다. 페레이라의 연구는 563 nm에서 HNB 흡광도 스펙트럼의 변화를 사용, pH 5.7에서 HNB 금속 복합체의 스펙트럼과 크게 겹치는 자유 염료 HNB 스펙트럼의 영역, 분석 감도상당히 낮은뿐만 아니라 상대적으로 약한 금속 결합 친화도20의결과. IMAC에서 Ni2+ 침출을 가진 우리의 자신의 실험실에 있는 문제점을 해결하기 위하여, 우리는 몇몇 전이 금속의 나노몰 수준을 검출할 수 있는 쉬운 분석분석판을 개발하기 위하여 브리튼25,26 및 Ferreria28에 의해 행해진 일을 확장했습니다. 우리는 HNB가 서브 나노 몰 결합 친화도를 가진 IMAC 금속에 대한 니켈 및 기타 일반적인 결합을 보여주었고 pH 값20의넓은 범위에 걸쳐 1:1 복합체를 형성합니다. 여기에서 보고된 분석결과는 이 사실 인정에 근거하고 금속 정량화를 위한 647 nm에 HNB 스펙트럼에 있는 흡광도 변경을 이용합니다. 이 분석은 금속 염료 복합체의 색도 검출 및 정량화 및 금속에 결합할 때 자유 염료의 흡광도의 관련 변화를 사용하여 일반적인 생화학 실험실에서 발견되는 일반적인 완충제 및 계측을 사용하여 생리학적 pH 범위에서 수행될 수 있다.
HNB를 사용한 금속의 색도 검출은 IMAC 수지에서 전이 금속 이온에 의한 단백질 오염 정도를 정량화하는 간단한 방법을 제공합니다. Ref. 20에 확립된 바와 같이 Ni2+는 1:1 stoichiometry와 ni-HNB 복합체의 pH 변경에 대한 해리 상수로 HNB에 결합합니다. 그러나, 복합 Kd는 모든 권장(7-12) pH 값에 대한 하위 nM 범위에 있다. 실질적으로, 그것은 모든 Ni2+ 모든 테스트 된 분획에 있는 다른 ?…
The authors have nothing to disclose.
이 자료는 그랜트 MCB-1817448에 따라 국립 과학 재단에 의해 지원 작업을 기반으로 토마스 F. 및 케이트 밀러 제프리스 기념 신탁에서 수상, 뱅크 오브 아메리카, 재단 이사 및 지정된 기증자 헤이즐 소프 카먼과 조지 게이 카먼 신뢰.
2xYT broth | Fisher Scientific | BP9743-500 | media for E.coli growth |
HEPES, free acid | BioBasic | HB0264 | alternative buffer |
HisPur Ni-NTA resin | Thermo Scientific | 88222 | |
Hydroxynaphthol blue disoidum salt | Sigma-Aldrich | 219916-5g | |
Imidazole | Fisher Scientific | O3196-500 | |
Imidazole | BioBasic | IB0277 | |
MOPS, free acid | BioBasic | MB0360 | alternative buffer |
Sodium chloride | Fisher Scientific | S271-500 | |
Sodium phosphate | Fisher Scientific | S369-500 | alternative buffer |
Tricine | Gold Bio | T870-100 | |
Tris base | Fisher Scientific | BP152-500 | |
Triton X-100 | Sigma-Aldrich | T9284-500 |