This work presents a protocol to yield homogeneous cell cultures of primary oculomotor, trochlear, and spinal motor neurons. These cultures can be used for comparative analyses of the morphological, cellular, molecular, and electrophysiological characteristics of ocular and spinal motor neurons.
Oculomotor neurons (CN3s) and trochlear neurons (CN4s) exhibit remarkable resistance to degenerative motor neuron diseases such as amyotrophic lateral sclerosis (ALS) when compared to spinal motor neurons (SMNs). The ability to isolate and culture primary mouse CN3s, CN4s, and SMNs would provide an approach to study mechanisms underlying this selective vulnerability. To date, most protocols use heterogeneous cell cultures, which can confound the interpretation of experimental outcomes. To minimize the problems associated with mixed-cell populations, pure cultures are indispensable. Here, the first protocol describes in detail how to efficiently purify and cultivate CN3s/CN4s alongside SMNs counterparts from the same embryos using embryonic day 11.5 (E11.5) IslMN:GFP transgenic mouse embryos. The protocol provides details on the tissue dissection and dissociation, FACS-based cell isolation, and in vitro cultivation of cells from CN3/CN4 and SMN nuclei. This protocol adds a novel in vitro CN3/CN4 culture system to existing protocols and simultaneously provides a pure species- and age-matched SMN culture for comparison. Analyses focusing on the morphological, cellular, molecular, and electrophysiological characteristics of motor neurons are feasible in this culture system. This protocol will enable research into the mechanisms that define motor neuron development, selective vulnerability, and disease.
The culture of primary motor neurons is a powerful tool which enables the study of neuronal development, function, and susceptibility to exogenous stressors. Motor neuron cultures are particularly useful for the study of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS)1,2, whose disease mechanisms are incompletely understood. Interestingly, despite the significant cell death of spinal motor neurons (SMNs) in both ALS patients and ALS model mice, cell death in oculomotor neurons (CN3s) and trochlear neurons (CN4s) are relatively scarce1,3,4,5,6,7,8,9. Therefore, comparative analyses of pure cultures of CN3s/CN4s and SMNs could provide important clues about mechanisms underlying relative vulnerability. Unfortunately, a major barrier to such analyses has been the inability to grow purified cultures of these motor neurons.
Many protocols have been described for the purification of SMNs from animal models. Most of these protocols use density gradient centrifugation10,11,12 and/or p75NTR-antibody-based cell-sorting panning techniques13,14,15,16. Density gradient centrifugation exploits the larger size of SMNs relative to other spinal cells, whereas p75NTR is an extracellular protein expressed exclusively by SMNs in the spinal cord. Nearly 100% pure SMN cultures have been generated by one or both of these protocols11,12,14. However, these protocols have not been successful in generating CN3/CN4 cultures because CN3s/CN4s do not express p75NTR, and other specific CN3/CN4 markers have not been identified. They are also smaller than SMNs and, therefore, more difficult to isolate based on size. Instead, in vitro studies of CN3s or CN4s have relied on dissociated17,18,19,20,21, explant17,22,23,24,25,26, and slice27,28 cultures, which are composed of heterogeneous cell types, and no protocols have existed for the isolation and culture of primary CN3s or CN4s.
Here, a protocol is described for the visualization, isolation, purification, and cultivation of CN3s, CN4s, and SMNs from the same embryonic day 11.5 (E11.5) IslMN:GFP transgenic mice29 (Figure 1, Figure 2A). IslMN:GFP specifically labels motor neurons with a farnesylated GFP that localizes to the cell membrane. This protocol enables species- and age-matched comparison of multiple types of motor neurons in order to elucidate pathological mechanisms in motor neuron disease.
All experiments utilizing laboratory animals were performed in accordance with NIH guidelines for the care and use of laboratory animals and with the approval of the Animal Care and Use Committee of Boston Children's Hospital.
1. Setting Up Timed Matings Prior to the Dissection
2. Dissection Conditions and Preparation of Instruments
3. PDL/Laminin Coating of Dishes/Coverslips
NOTE: Culture dissociated primary motor neurons in 96 well or 24 well plates, depending on the number of cells required for the application. Cells can be imaged directly in the tissue culture plate without the use of coverslips if the wells are optically transparent and the thicknesses are compatible with imaging.
4. Preparation of Dissection, Motor Neuron Culture Media, and Dissociation Solutions
NOTE: Concentrations in parentheses indicate the final concentrations of each reagent.
5. Ventral midbrain and Spinal Cord Dissection
NOTE: Perform all of the following steps except for steps 5.1.1−5.1.3 and 5.1.5−5.1.6 under a fluorescence dissection stereomicroscope. Total dissection time per experiment is typically 3−5 h, depending on the proficiency at the dissection technique and the number of motor neurons required for each experiment.
6. Tissue Dissociation
NOTE: Total dissociation time is typically 1.5 h per experiment.
7. Fluorescence-activated Cell Sorting (FACS)
NOTE: This protocol was optimized using a FACS sorter equipped with a 15 mw 405 nm violet laser, a 100 mw 488 nm blue laser, a 75 mw 594 nm orange laser, and a 40 mw 640 nm red laser. Cells were sorted as sheath fluid in sterile PBS under aseptic conditions through a 100 µm nozzle. In order to minimize cell stress, the flow rate was set to a sample pressure of 1−3, such that a maximum of 1,000−4,000 events per second were acquired. Total FACS time is typically 1−2 h per experiment.
8. Culture of Purified Primary Motor Neurons
The aim of this protocol was to highly purify and culture both primary CN3s/CN4s and SMNs long-term to enable comparative analyses of the mechanisms underlying motor neuron disorders (see Figure 1 and Figure 2 for overview).
Once neurons were successfully isolated and grown in culture, nearly pure primary CN3/CN4 and SMN cultures were obtained (Figure 5A,B) and maintained for at least 14 DIV (Figure 4 and Figure 6). The purities of CN3/CN4 and SMN cultures at 2 DIV were 93.5 ± 2.2% and 86.7 ± 4.7%, respectively, when assessed by ICC using the motor neuron marker Islet1 and neuronal marker TUJ1 (Figure 5B). However, these high purities relied heavily on the age of the embryos and on setting appropriate thresholds for GFP gates during FACS (Figure 3). Dissection of embryos at E10.5 is more difficult than dissection at E11.5 due to increased softness and adhesiveness of tissues, resulting in decreased motor neuron yields. However, the purities of E10.5 CN3s/CN4s and SMNs were comparable to those for E11.5 embryos (92.8% and 82.2% at 2 DIV, respectively; data obtained from a single experiment). The purities of CN3s/CN4s and SMNs dramatically decreased when E13.5 embryos were used, even if only the highest GFP-positive population was collected (20.7% and 7.4% at 2 DIV, respectively; data obtained from a single experiment), probably due to the expression of GFP in non-motor neurons (Figure 7). This same tendency also held true for E12.5 cultures, although it was much less dramatic. Therefore, embryos at E12.5 or older are inappropriate for use in the purification of motor neurons using this protocol.
Pure motor neuron cultures are valuable for understanding isolated growth patterns, behaviors, and vulnerabilities of motor neurons. This example demonstrates how these cultures can be used to test motor neuron responses to chemical treatment. To determine if primary CN3s/CN4s and SMNs show differential responses to endoplasmic reticulum (ER) stressors, primary monocultures of CN3s/CN4s and SMNs were obtained using this protocol and treated with varying concentrations of an ER stressor, cyclopiazonic acid (CPA). Neurons were treated with CPA (5, 10, 15, 20, 25, or 30 µM) or vehicle control (DMSO) at 2 DIV and fixed 3 days later for ICC to evaluate survival ratios (Figure 8A). The number of viable neurons in each sample was counted and survival ratios were calculated as the number of viable cells in drug-treated wells divided by the number of viable cells in the wells treated with DMSO. CN3/CN4 monocultures were significantly more resistant to CPA treatment (10−25 µM) as compared to SMN monocultures (Figure 9 and Figure 8B)31.
In conclusion, this protocol allows for the generation of highly purified primary mouse embryonic CN3/CN4 and SMN cultures that provide a powerful and reliable system for the investigation of neuronal behavior.
Figure 1: Scheme for preparation of mouse embryonic motor neurons. The schematic illustrates the steps involved in the isolation and culture of mouse embryonic motor neurons and the approximate time in hours or days for each step. The order of the dissection procedure for CN3/CN4 and for SMN are each labelled sequentially 1 through 4. Abbreviations: CN3/CN4 = oculomotor neuron/trochlear neuron; SMN = spinal motor neuron; FACS = fluorescence-activated cell sorting; h = hour; d = day. Please click here to view a larger version of this figure.
Figure 2: Dissection of the ventral midbrain and the cervical (C1)-lumbar (L2-L3) portion of the ventral spinal cord. (A) Lateral (a) and dorsal (b) views of GFP-positive motor neurons in an E11.5 IslMN:GFP transgenic mouse embryo under fluorescein isothiocyanate (FITC) illumination. A whole mount E11.5 embryo was prepared as previously described32 in order to make the embryo transparent. Subsequently, the embryo was analyzed by immunofluorescence labeling with anti-GFP staining (green). Images were captured under a confocal microscope. Scale bars = 200 µm (lateral view) and 400 µm (dorsal view). Abbreviations: S = superior; I = inferior; V = ventral; D = dorsal. (B-H) Dissection steps highlighted on images of E11.5 ventral midbrain and ventral spinal cord tissues taken with an equipped camera under bright light (Bb) or FITC illumination using a fluorescence dissection stereomicroscope. Scale bars = 200 µm (D), and 1 mm (A−C, E−H). (B) (a) Removal of the face and tail of the embryo by cutting along the red lines. (b) Embryo positioned for dissection. Positioning of the front of the microscope is indicated by an asterisk. (C) Cutting along the solid red line in order to slit open the roof of the fourth ventricle (a) lateral view and (b) dorsal view. Use of this opening to cut along the surface of the embryo dorsal to the brain (trajectory indicated by dashed red arrow). This exposes the tissue containing mesenchyme, CN3, and CN4, which can be lifted out of the cranium. For SMN dissection, insertion of forceps into the same opening between the fourth ventricle and its roof, then cutting toward the caudal side of the embryo (trajectory indicated by dashed yellow arrow). (D) Final view of the ventral midbrain containing bilateral GFP-positive CN3 and CN4 nuclei. The edges of the tissue are highlighted by a red rectangle. Cutting along yellow dotted line to collect CN3 and CN4 nuclei separately, if desired. (E) After opening the rest of the hindbrain and spinal cord, flapping dorsal tissues pinched off above the red lines on both sides with tweezers (a) before, and (b) after. (F) Bilaterally removal of excess tissue ventral to the spinal cord along the red line (a) before, and (b) after. (G) Cutting of the ventral spinal cord at the two locations indicated by the red lines. On the rostral side, cutting of the floating ventral spinal cord transversely above C1 where the first GFP-positive anterior horn projects. Cutting of the caudal end of the spinal cord transversely at the upper boundary of the lower limb. Once these cuts are made, the cervical (C1) through lumbar (L2-L3) portion of the ventral spinal cord can be dissected away. (H) Final view of the ventral spinal cord containing GFP-positive SMN columns. Please click here to view a larger version of this figure.
Figure 3: Representative sort plots of ventral midbrains (A) and ventral spinal cords (B). (Aa and Ba) Forward Scatter Area (FSC-A) versus Side Scatter Area (SSC-A) sorted plot before exclusion of debris and dead cells. (Ab, Bb, Ac, Bc) Sorted plots for exclusion of cell clumps (b) and doublets (c) based on Width (SSC-W) versus SSC-A and Forward Scatter Width (FSC-W) versus FSC-A, respectively. (Ad and Bd) Sorted plots to isolate IslMN:GFP -positive motor neurons. In order to obtain a pure culture, the GFP gate must be set higher for SMNs (Bd) than for CN3s/CN4s (Ad). (Ae and Be) Percentages of cells gated for collection by FACS sorting. %Parent represents the percentage of cells in the current gated population relative to the number of cells in the previous gated cell population, whereas %Total represents the percentage of gated cells relative to total cells. Expected percentages of GFP-positive cells as compared to total cells (boxed in red) are 0.5−1.5% for CN3/CN4 and 1.5−2.5% for SMN. If the dissection was performed successfully, these percentages can be used as a benchmark to set up the GFP-positive gate in (Ad and Bd). Please click here to view a larger version of this figure.
Figure 4: Phase-contrast images of primary CN3/CN4 and SMN monocultures at 2, 7, and 14 DIV. Representative differential interference contrast images of primary CN3/CN4 and SMN cultures were captured at 2, 7, and 14 DIV with inverted fluorescence microscope using corresponding image acquisition and processing software and 40x objectives. Neuronal processes became thicker and longer by 14 DIV. Neuronal cell body sizes became enlarged and tended to aggregate in long-term cultures, especially for SMNs. Both cultures can be maintained at least 14 DIV. Scale bar = 50 µm. Please click here to view a larger version of this figure.
Figure 5: Characterizations of isolated E11.5 mouse CN3/CN4 and SMN cultures. (A) Representative immunocytochemistry images of E11.5 mouse CN3s/CN4s (top) and SMNs (bottom) cultured for 2 DIV. Immunofluorescence labeling with the neuronal marker TUJ1 (green) and the motor neuron marker Islet1 (red) performed to analyze neurons and nuclei were counterstained with DAPI (blue). Almost all the cultured cells were motor neurons (TUJ1+, Islet1+). Images were captured with an inverted fluorescence microscope using corresponding image acquisition and processing software and 20x objectives. Samples were imaged and processed to achieve maximum signal intensity without saturated pixels. All of the microscopic work and image processing in the following figures were performed in these conditions unless otherwise specified. Scale bar = 100 µm. (B) The purities of E11.5 mouse CN3/CN4 and SMN cultures at 2 DIV. The purities of CN3/CN4 and SMN cultures were 93.5 ± 2.2% and 86.7 ± 4.7%, respectively. Dead neuronal cell bodies were assessed by screening for pyknotic nuclear morphology and membrane swelling. Neuronal processes were classified as degenerating processes when signs of beading and swelling were observed. Cells with neither cell body death nor degenerating processes were considered viable non-motor neurons (TUJ1+, Islet1–) or viable motor neurons (TUJ1+, Islet1+)33. The purities of motor neuron cultures were calculated as the number of viable motor neurons divided by the total number of viable non-motor neurons plus viable motor neurons. Values represent the mean ± SEM of three separate experiments. Not significant (p > 0.05) by Student's t test. Cell counting was performed manually under 20x magnification. Abbreviations: SEM = standard error of the mean. Please click here to view a larger version of this figure.
Figure 6: Representative immunocytochemistry of primary CN3/CN4 and SMN monocultures at 2, 7, and 14 DIV. Primary CN3/CN4 and SMN cultures were analyzed at 2, 7, 14 DIV by immunofluorescence labeling with TUJ1 (green), and nuclei were counterstained with DAPI (blue). Neuronal processes become thicker and longer by 14 DIV. Neuronal cell body sizes became enlarged and tended to aggregate in long-term cultures, particularly for SMNs. Both CN3/CN4 and SMN cultures can be maintained at least 14 DIV. Images were captured under 10x magnification. Scale bar = 200 µm. Please click here to view a larger version of this figure.
Figure 7: Characterization of E13.5 mouse CN3/CN4 and SMN isolated cultures. E13.5 CN3/CN4 and SMN were isolated and cultured using this protocol and analyzed at 2 DIV by immunofluorescence labeling with TUJ1 (green) and Islet1 (red), and the nuclei were counterstained with DAPI (blue). Many non-motor neuronal cells (TUJ1+, Islet1–) were present (arrows) resulting in a drastic decrease in both CN3/CN4 and SMN purity, with the decrease more pronounced in SMN cultures. Images were captured under 20x magnification. Scale bar = 100 µm. Please click here to view a larger version of this figure.
Figure 8: Representative application of primary motor neuron culture demonstrating that CN3s/CN4s are selectively resistant to ER stress induced by CPA. (A) Experimental outline: primary CN3/CN4 and SMN monocultures were treated with CPA or vehicle control (DMSO) at 2 DIV and cell viabilities were evaluated through immunocytochemistry analysis after 3 days of treatment. This outline has been modified from published work31. (B) Quantification of survival ratios of CN3s/CN4s and SMNs treated with 5−30 µM CPA for 3 days from 2 DIV. Neurons were analyzed by immunofluorescent labeling of cells with TUJ1, and nuclei were counterstained with DAPI. Survival ratios were calculated as the number of viable cells (see Figure 5B legend) in drug-treated wells divided by the number of viable cells in wells containing vehicle alone (DMSO). Cell counting was performed manually under 20x magnification. Values represent the mean ± SEM of four separate experiments. *p < 0.05; ***p < 0.005 by Student's t test. This figure has been modified from previously published work31. Please click here to view a larger version of this figure.
Figure 9: Representative immunocytochemistry of primary CN3/CN4 and SMN monocultures after a 3 day exposure to increasing concentrations of CPA beginning at 2 DIV. Neurons were analyzed by immunofluorescent labeling of cells with TUJ1 (green) and nuclei were counterstained with DAPI (blue). Primary CN3s/CN4s were more resistant to CPA treatment than primary SMNs. Images were captured under 10x magnification. Scale bar = 200 µm. Please click here to view a larger version of this figure.
Number of midbrains (X) | Papain | Albumin-ovomucoid | Hibernate E | |||||||||
10 ≤ X ≤20 | 200 μL | 100 μL | 600 μL | |||||||||
20 < X ≤30 | 300 μL | 150 μL | 700 μL | |||||||||
30 < X ≤40 | 400 μL | 200 μL | 800 μL | |||||||||
Number of spinal cords (Y) | Papain | Albumin-ovomucoid | Hibernate E | |||||||||
3 ≤ Y ≤5 | 200 μL | 100 μL | 500 μL | |||||||||
5 < Y ≤10 | 400 μL | 200 μL | 800 μL | |||||||||
10 < Y ≤15 | 600 μL | 300 μL | 1200 μL |
Table 1: Appropriate volumes of papain, albumin-ovomucoid, and final suspension used in dissociation steps. The appropriate volumes of papain and albumin-ovomucoid to be used with various numbers of ventral midbrain and ventral spinal cord tissues were modified from the manufacturer's instructions after several rounds of optimization. Because tissues are subject to stress during dissociation and sorting, a pooled collection of more than 10 ventral midbrains and more than three ventral spinal cords is recommended. The volume of papain was determined by considering the balance between effective dissociation and the stress of this procedure. The volume of albumin-ovomucoid inhibitor solution is half of that of papain. The appropriate volume of Hibernate E final suspension was determined such that cell density does not exceed 107 cells/mL, but the cells do not become excessively diluted.
Historically, in vitro studies of CN3 and/or CN4 motor neurons have relied on heterogeneous cultures such as dissociated17,18,19,20,21, explant17,22,23,24,25,26, and slice27,28 cultures, because these cells cannot be distinguished from surrounding cells based on size, and specific markers for these cells have not been reported. The present protocol is a comprehensive method for the isolation and culture of primary E11.5 murine CN3s/CN4s, and SMNs from the same embryos and confirm the high purity of the cultures. By generating pure SMN and CN3/CN4 cultures from the same mouse embryos, the protocol enables controlled comparisons of the in vitro behaviors of CN3s/CN4s versus SMNs isolated from wild type as well as mutant embryos.
The pure cultures of CN3s/CN4s and SMNs generated by this protocol allow comparative studies of morphological, cellular, molecular, and electrophysiological characteristics of these motor neurons. In theory, because other cranial motor neuron populations can be visualized and dissected from this IslMN:GFP transgenic mouse line (including abducens, motor trigeminal, facial, and hypoglossal), this protocol could be expanded for their isolation and culture as well, provided that FACS GFP gates are adjusted appropriately. Finally, the FACS-sorted motor neurons derived from this protocol can be subjected to genomic (e.g., Assay for Transposase-Accessible Chromatin using sequencing, or ATAC-seq) and/or transcriptomic (e.g., RNA sequence31) analyses to study normal development and the selective vulnerability of specific motor neuron subtypes in neurodegenerative disorders31.
There are multiple steps in this protocol that are critical to maximize the number of pure, healthy motor neurons in the isolated culture system. During the dissection, the GFP-negative tissues (e.g., mesenchyme and DRGs) should be maximally removed without damaging the motor neurons, because these tissues are adhesive and can trap SMNs during filtering or cause clogging during FACS sorting. During tissue dissociation, the minimal essential volume of papain should be used, and the cells must be treated gently with minimal but sufficient trituration. Papain was used for the tissue dissociation step in this protocol, because preliminary data indicated that it is less destructive than trypsin to both CN3/CN4 and SMN. Survival ratios based on plated numbers of CN3s/CN4s and SMNs at 2 DIV increased from 39.5% to 52.7% and from 52.3% to 58.4%, respectively, when papain was used instead of trypsin (0.25%, 4 min incubation). Although these numbers are derived from a single experiment performed before full optimization, additional reports also suggest that trypsin is suboptimal for cell extraction from nervous system tissues12,34,35,36. During FACS, fluorescent vital dyes (propidium iodide and calcein blue) and small sorting nozzles (e.g., 70 µm) should not be used, because they are deleterious to motor neuron survival. Use of large sorting nozzles (100 µm or larger) is highly recommended, because SMN cell death increases significantly when a 70 µm nozzle is used. Setting the appropriate gating thresholds for GFP-positive cells in FACS is a critical step in order to obtain pure cultures. Motor neuron cultures are supplemented with forskolin, IBMX, and growth factors (BDNF, CNTF, and GDNF). Forskolin and IBMX have been reported to additively promote SMN survival37,38. Preliminary data from the present studies suggest that forskolin and IBMX also additively increase CN3/CN4 survival. Survival ratio based on plated numbers of CN3s/CN4s at 2 DIV increased from 17.5% to 26.9%, 31.9%, and 37.0% when IBMX, forskolin, and IBMX+forskolin were added, respectively (numbers are based on a single experiment performed prior to full optimization of cell culture conditions). It is best to perform all medium changes and washes of cultured cells by leaving half of the original volume to avoid detaching cultured cells. Finally, it is also ideal to reduce the time spent between dissection and plating of motor neurons (e.g., by shortening dissection time using multiple dissectors) to improve the viability of the cultures.
There are four major potential problems that may arise when following this protocol. The first is low yield of motor neurons after FACS. Potential causes for low yields include using young embryos (e.g., E10.5), which have fewer motor neurons, insufficient removal of adhesive GFP-negative tissues during dissection (e.g., mesenchyme and DRGs), which can trap motor neurons and lead to their removal during filtration, insufficient papainization/trituration during dissociation, and/or setting the GFP-positive gate too high during FACS. The second potential problem is low purity of the motor neuron cultures, which most likely arises from the use of older embryos (e.g., E12.5) and/or from setting the GFP-positive gate too low during FACS. Third, a low number of attached motor neurons in culture may be observed due to inappropriate FACS sorting and/or inadequate PDL/laminin coating of plates/coverslips. Fourth, motor neurons can show low viability in culture. Potential causes of low viability include rough and/or prolonged dissection, excessive papainization/trituration during dissociation, inappropriate handling of cells throughout the protocol (e.g., rough pipetting of cells, failure to place cells on ice, failure to pre-chill PBS and HBSS), and/or excessive time between euthanization of pregnant mice and final plating of the cells. Use of reagents that are not fresh and/or inappropriate concentrations can also impair experimental outcomes.
There are three major limitations of this protocol. IslMN:GFP transgenic mice and FACS sorting are both fairly expensive. They are, however, crucial for this protocol as there is currently no alternative method capable of generating highly purified CN3s/CN4s in a more economical fashion. There is a small E10.5-E12.5 age window for the embryonic mice, and it is difficult to confirm that appropriately aged embryos are present, especially if an ultrasound machine is not available. If only pure SMNs are required, they can be derived from E12.5-15.0 mouse embryos using methods such as gradient centrifugation10,11,12 and/or p75NTR-antibody-based cell-sorting panning techniques13,14,15,16. Finally, protein-based assays that require a large amount of starting material are not feasible from these cultures due to the small yield of motor neurons (especially CN3s/CN4s). Stem cell-derived motor neurons31,39, which can be generated limitlessly, could in theory be substituted for this purpose.
The authors have nothing to disclose.
We thank Brigitte Pettmann (Biogen, Cambridge, MA, USA) for instruction in SMN dissection techniques; the Dana Farber Cancer Institute Flow Cytometry Facility, the Immunology Division Flow Cytometry Facility of Harvard Medical School, The Joslin Diabetes Center Flow Cytometry Core, Brigham and Women's Hospital Flow Cytometry Core, and Boston Children's Hospital Flow Cytometry Research Facility for FACS isolation of primary motor neurons; A.A. Nugent, A.P. Tenney, A.S. Lee, E.H. Nguyen, M.F. Rose, additional Engle laboratory members, and Project ALS consortium members for technical assistance and thoughtful discussion. This study was supported by Project ALS. In addition, R.F. was funded by the Japan Heart Foundation/Bayer Yakuhin Research Grant Abroad and NIH Training grant in Genetics T32 GM007748; J.J. was supported by the NIH/NEI training program in the Molecular Bases of Eye Diseases (5T32EY007145-16) through Schepens Eye Research Institute and by the Developmental Neurology Training Program Postdoctoral Fellowship (5T32NS007473-19) through Boston Children's Hospital; M.C.W was supported by NEI (5K08EY027850) and Children's Hospital Ophthalmology Foundation (Faculty Discovery Award); and E.C.E. is a Howard Hughes Medical Institute Investigator.
Alexa Fluor 488-conjugated goat anti-mouse IgG (H+L) | Thermo Fisher Scientific | A-11001 | 1:400 |
Alexa Fluor 594-conjugated F(ab')2 goat anti-rabbit IgG (H+L) | Thermo Fisher Scientific | A-11072 | 1:400 |
B27 Supplement (50X), serum free | Thermo Fisher Scientific | 17504-044 | |
BD FACSAria llu SORP Flow Cytometer | BD Bioscience | – | This has 4 laser system equipped with 405, 488, 594, and 640 nm lasers. |
BD Falcon 70μm Nylon Cell Strainers | CORNING | 352350 | For filtering the dissociating cells before FACS. |
BD Falcon Round Bottom Test Tubes With Snap Cap | CORNING | 352054 | |
BDNF Human | ProSpec-Tany TechnoGene, Ltd. | CYT-207 | |
Cell Culture microplate, 96 well, PS, F-bottom (Chimney Well) | Greiner Bio-One International | 655090 | We tried multiple 96-well dishes and this was the best one for culture and analyses after ICC |
Circular Cover Glasses for microscopy | Karl Hecht & Assistent | 1001/14 | We used this coverslip since the area was large (diamater: 14 mm). |
CNTF Human | ProSpec-Tany TechnoGene, Ltd. | CYT-272 | |
Cyclopiazonic acid from Penicillium cyclopium | Sigma-Aldrich | C1530 | CPA. One of ER stressors. |
4′,6-diamidino-2-phenylinodole (DAPI) | Thermo Fisher Scientific | D1306 | |
Dimethyl sulfoxide | Sigma-Aldrich | D2650 | DMSO |
Dumont #5 Forceps Inox Tip Size .05 x .01 mm Biologie Tips | Roboz Surgical Instrument | RS-5015 | |
Forskolin | Thermo Fisher Scientific | BP25205 | |
GDNF Human | ProSpec-Tany TechnoGene, Ltd. | CYT-305 | |
GlutaMAX supplement | Thermo Fisher Scientific | 35050-061 | |
Hanks’ Balanced Salt Solution (HBSS) | Thermo Fisher Scientific | 14175-095 | |
Hibernate E | BrainBits | HE | |
Hibernate E low fluorescence | BrainBits | HELF | Fluorescence which hinders observation of embryo's GFP expressions should be low. |
Horse serum, heat inactivated, New Zealand origin | Thermo Fisher Scientific | 26050-070 | |
IBMX | Tocris Cookson | 2845 | Isobutylmethylxanthine |
Laminin | Thermo Fisher Scientific | 23017-015 | |
Leibovitz’s L15 medium | Thermo Fisher Scientific | 11415064 | |
2-Mercaptoethanol | Sigma-Aldrich | M6250 | |
Micro Dissecting Scissors | Roboz Surgical Instrument | RS-5913 | |
Micro Knife 4.75" 1.7 x 27 mm blade | Roboz Surgical Instrument | RS-6272 | |
Moria Mini Perforated Spoon | Fine Science Tools | 10370-19 | |
mouse monoclonal antibody to neuronal class III β-tubulin (TUBB3) | BioLegend | 801202 | 1:500, TUJ1 |
Nikon Perfect Focus Eclipse Ti live cell fluorescence microscope and Elements software | Nikon | – | Differential interference contrast images and immunocytochemistry images of the cell cultures were captured with these equipments |
Nitric Acid 90%, Fuming (Certified ACS) | Fisher Scientific | A202-212 | For rinsing coverslips |
Olympus 1.7ml Microtubes, Clear | Genesee Scientific | 22-281 | These are the tubes that we described "1.7 mL microcentrifuge tubes" in the context. |
Papain Dissociation System | Worthington Biochemical Corp | LK003150 | Papain solution and alubumin-ovomucoid inhibitor solution are prepared from this kit. |
Penicillin-streptomycin (10,000 U/ml) | Thermo Fisher Scientific | 15140-122 | |
Phosphate buffered saline (PBS) | Thermo Fisher Scientific | 10010-023 | |
Poly D-lysin (PDL) | MilliporeSigma | A-003-E | |
rabbit monoclonal antibody to Islet1 | Abcam | ab109517 | 1:200 |
SMZ18 and SMZ1500 zoom stereomicroscopes with DS-Ri1 camera | Nikon | – | Dissection was performed and images of dissected embryos and tissues are captured under these fluorescence microscopes. |
Sylgard 170 Black Silicone Encapsulant – A+B 0.9 Kg kit | Dow Corning | 1696157 | We make dissection dishes using this kit. |
TC treated Dishes, 100 x 20 mm | Genesee Scientific | 25-202 | We make dissection dishes using this dish. |
Thum Dressing Forceps 4.5" Serrated 2.2 mm Tip Width | Roboz Surgical Instrument | RS-8100 | |
Transducer for LOGOQ e VET | GE Healthcare | L8-18i-RS | For ultrasound on female mice |
Veterinary ultrasound machine | GE Healthcare | LOGOQ e VET | For ultrasound on female mice |
Zeiss LSM 700 series laser scanning confocal microscope and Zen Software | Carl Zeiss | – | Confocal image of the embryo was captured with these equipments |