Presentato qui è un protocollo per isolare vari sottoinsiemi di macrofagi e altre cellule non immuni dal miocardio umano e topidano preparando una sospensione a singola cellula attraverso la digestione enzimatica. Vengono inoltre presentati schemi di Gating per l’identificazione e la caratterizzazione basata sulla citometria del flusso di macrofagi.
I macrofagi rappresentano le popolazioni di cellule immunitarie più eterogenee e abbondanti nel cuore e sono centrali nel guidare l’infiammazione e le risposte riparative dopo lesioni cardiache. Come vari sottoinsiemi di macrofagi orchestrano le risposte immunitarie dopo lesioni cardiache è un’area attiva di ricerca. Presentato qui è un semplice protocollo che il nostro laboratorio esegue regolarmente, per l’estrazione di macrofagi da campioni di topo e miocardio umano ottenuti da individui sani e malati. In breve, questo protocollo comporta la digestione enzimatica del tessuto cardiaco per generare una singola sospensione cellulare, seguita da colorazione anticorpale, e citometria di flusso. Questa tecnica è adatta per i saggi funzionali eseguiti su cellule ordinate e per il sequenziamento di RNA sfuso e a singola cellula. Uno dei principali vantaggi di questo protocollo è la sua semplicità, la variazione minima giorno per giorno e l’ampia applicabilità che consente lo studio dell’eterogeneità dei macrofaci tra vari modelli murini ed entità di malattie umane.
I macrofagi rappresentano il tipo di cellule immunitarie più abbondanti nel cuore, e svolgono un ruolo significativo nel generare robuste risposte infiammatorie e riparative dopo lesioni cardiache1,2,3,4. In precedenza, il nostro gruppo identificava due sottoinsiemi principali di macrofagi nel cuore murino derivati da origini dello sviluppo distinte5,6. In generale, è possibile identificare popolazioni distinte di sottoinsiemi di macrofagi cardiaci residenti in tessuto in base all’espressione della superficie cellulare del CCR2 (recettore chemiochina motivo C-C 2). CCR2– i macrofagi (espressione della superficie cellulare: CCR2–MHCIIbasso e CCR2–MHCIIalto)sono di origine embrionale (linee primitive ed eritromieloidi), in grado di auto-rinnovarsi e rappresentare una popolazione dominante in condizioni omeostatiche. Residenti CCR2– i macrofagi sono di origine ematopoietica definitiva, sono mantenuti attraverso il reclutamento di monociti circolanti e rappresentano una popolazione minore in condizioni omeostatiche. Funzionalmente, CCR2– i macrofagi generano un’infiammazione minima e sono fondamentali per lo sviluppo coronarica cardiaca neonatale5,7. Al contrario, i macrofagi CCR2 avviano robuste risposte infiammatorie a seguito di insulti cardiaci e contribuiscono a lesioni cardiomiociti collaterali, rimodellamento avverso del ventricolo sinistro e progressione dell’insufficienza cardiaca8,9.
Recentemente, abbiamo dimostrato che il miocardio umano contiene anche due distinti sottoinsiemi di macrofagi identificati in modo simile a CCR2– o CCR2–8. L’espressione genica e le analisi funzionali hanno rivelato che i macrofagi CCR2– e CCR2– rappresentano sottoinsiemi funzionalmente divergenti e sono funzionalmente analoghi a CCR2– e CCR2– macrofagi trovati nel cuore del topo. Human CCR2– i macrofagi esprimono solidi livelli di fattori di crescita, tra cui IGF1, PDGF, Cyr61 e HB-EGF. I macrofagi CCR2sono arricchiti in chemiochini e citochine che promuovono l’infiammazione, come IL-1b, IL-6, CCL-2, CCL-7 e TNF-a. I macrofagi stimolati secernono livelli marcatamente più elevati della citochina infiammatoria interleuchina-1 ( IL-1) in coltura. Il modo in cui questi sottoinsiemi contribuiscono in modo differenziale alla riparazione dei tessuti e al rimodellamento ventricolare sinistro (LV) nel contesto delle lesioni cardiache rimane un’area di ricerca attiva.
L’analisi basata sulla citometria del flusso nel mouse e nel cuore umano richiede la digestione del tessuto cardiaco e la generazione di una sospensione a singola cellula seguita dall’analisi citometrica del flusso o dallo smistamento cellulare per ulteriori processi a valle come il sequenziamento di massa di RNA /sequenziamento dell’RNA a singola cellula o la coltura delle cellule per analisi funzionali. Il protocollo originale per la creazione di una sospensione a cella singola da cuori murini è stato riportato per la prima volta dal gruppo Nahrendorf in Nahrendorf et al. 200710. Il nostro laboratorio ha adattato e modificato il protocollo per estrarre i macrofagi dal miocardio umano. Utilizzando lo stesso protocollo, ma con una leggera modifica nello schema di colorazione e gating, CD45– cellule stromali del miocardio umano può anche essere raccolto. Presentato qui, in testo e video, è un protocollo che viene eseguito regolarmente per l’estrazione di macrofagi o stromal dal miocardio umano.
I campioni di tessuto cardiaco sono ottenuti da pazienti adulti con cardiomiopatia dilatata (DCM: idiopatica o familiare) o cardiomiopatia ischemica (ICM) sottoposta a impianto di assistenza ventricolare sinistra (LVAD) impianto o trapianto cardiaco. I cuori esoppiantati o i nuclei LVAD sono intravascolari perfusi con salina fredda prima di iniziare la procedura di digestione. È importante notare che la “qualità” del campione di tessuto determinata in termini di grado di cicatrici o infiltrazione di tessuto adiposo può influenzare notevolmente la resa dei macrofagi. Gli esemplari cardiaci con ampie aree di cicatrici avranno una resa cellulare molto più bassa e possono porre gravi limitazioni tecniche quando i metodi di analisi a valle desiderati richiedono una coltura cellulare in vitro.
Il protocollo consente l’estrazione di vari sottoinsiemi di macrofafi dal miocardio umano. Il protocollo è semplice e richiede da 3 a 4 ore per preparare le sospensioni a cella singola pronte per l’analisi FACS. Anche se il protocollo è relativamente semplice da eseguire, ci sono alcuni aspetti tecnici che devono essere considerati che ridurrà al minimo la variabilità. In primo luogo, lavorare in modo tempestivo con il tessuto umano è necessario per una vitalità cellulare ottimale. È importante mantenere il tessut…
The authors have nothing to disclose.
Questo progetto è stato reso possibile dai finanziamenti forniti dal Children’s Discovery Institute della Washington University e dal St. Louis Children’s Hospital (CH-II-2015-462, CH-II-2017-628), dalla Fondazione del Barnes-Jewish Hospital (8038-88) e dal NHLBI (R01) HL138466, R01 HL139714). K.J.L. è supportato da NIH K08 HL123519 e Burroughs Welcome Fund (1014782).
15 mL Conocal Tubes | Thermo Fisher | 14-959-53A | |
40 µm Cell Strainers | Thermo Fisher | 50-828-736 | |
50 mL Conical Tubes | Thermo Fisher | 352098 | |
ACK Lysis Buffer | Gibco | A10492-01 | |
Bovine Serum Albumin | Sigma | A2058 | |
Collagenase 1 | Sigma | C0130-1G | |
DAPI | Thermo Fisher | D1306 | |
DMEM 1x | Gibco | 11965-084 | |
DNAse 1 | Sigma | D4527-20KU | |
DRAQ5 | Thermo Fisher | 62251 | |
EDTA 0.5M pH 8 | Corning | 46-034-CI | |
Enzyme Deactivating Buffer | 490 mL HBSS, 10 mL FBS, 1 g BSA | ||
FACS Buffer | 976 mL PBS, 20 mL FBS, 4mL EDTA (0.5M) | ||
Fetal Bovine Serum | Gibco | A3840201 | |
Forceps | VWR | 82027-406 | |
HBSS 1x | Gibco | 14175-079 | |
Hemostats | VWR | 63042-052 | |
Hyaluronidase type 1-s | Sigma | H3506-500MG | |
PBS 1x | Gibco | 14190-136 | |
Petridishes | Thermo Fisher | 172931 | |
Razor Blade | VWR | 55411-050 | |
Scissors | VWR | 82027-578 |