Bu işlemin genel amacı hafif travmatik beyin hasarı olan bir sıçanda hipokampus kantitatif mikroyapısal bilgi elde etmektir. Bu gelişmiş difüzyon ağırlıklı manyetik rezonans görüntüleme protokolü ve parametrik difüzyon haritalarının ilgi alanı tabanlı analizi kullanılarak yapılır.
Hafif travmatik beyin hasarı (mTBI) edinilmiş beyin hasarının en sık görülen türüdür. Travmatik beyin hasarı olan hastalar muazzam bir değişkenlik ve heterojenlik (yaş, cinsiyet, travma türü, diğer olası patolojiler, vb) gösterdiğinden, hayvan modelleri klinik araştırmalarda sınırlamalar olan faktörlerin çözülmesinde önemli bir rol oynamaktadır. TBI’den sonra yaralanma ve onarımın biyolojik mekanizmalarını araştırmak için standart ve kontrollü bir ortam sağlarlar. Ancak, tüm hayvan modelleri etkili mTBI yaygın ve ince doğasını taklit. Örneğin, yaygın olarak kullanılan kontrollü kortikal etki (CCI) ve lateral sıvı perküsyon hasarı (LFPI) modelleri beyni ortaya çıkarmak ve yaygın olarak mTBI’de görülmeyen yaygın fokal travmaya neden olmak için kraniyotomi kullanırlar. Bu nedenle, bu deneysel modeller mTBI taklit etmek için geçerli değildir. Bu nedenle, mTBI araştırmak için uygun bir model kullanılmalıdır. Sıçanlar için Marmarou kilo damla modeli hafif travma sürdüren hastalarda görüldüğü gibi benzer mikroyapısal değişiklikler ve bilişsel bozukluklar neden olur; bu nedenle, bu model bu protokol için seçildi. Konvansiyonel bilgisayarlı tomografi ve manyetik rezonans görüntüleme (MRG) taramaları genellikle hafif bir yaralanma sonrasında herhangi bir hasar göstermez, çünkü mTBI genellikle sadece ince ve yaygın yaralanmalara neden olur. Difüzyon ağırlıklı MRG ile beyin dokusunun mikroyapısal özelliklerini araştırmak mümkündür, bu da hafif travma sonrası mikroskobik değişiklikler hakkında daha fazla bilgi sağlayabilir. Bu nedenle, bu çalışmanın amacı, hafif ve yaygın beyin hasarı elde edildikten sonra hastalığın ilerlemesini takip etmek için seçilen bir ilgi bölgesi (yani, hipokampus) kantitatif bilgi elde etmektir.
Travmatik beyin hasarı (TBI) son yıllarda daha fazla dikkat kazanmıştır, bu beyin yaralanmaları yaşam boyu bilişsel neden olabilir olduğu ortaya çıkmıştır gibi, fiziksel, duygusal, ve sosyal sonuçları1. Bu artan farkındalığa rağmen, hafif TBI (mTBI, veya beyin sarsıntısı) hala sık sık underreported ve tanısı konmamış. MTBI sessiz bir salgın olarak anılacaktır ve mTBI öyküsü olan bireyler madde bağımlılığı veya psikiyatrik sorunlar2daha yüksek oranlarda göstermektedir. MTBI’li bazı hastalar, genellikle konvansiyonel bilgisayarlı tomografi (BT) veya manyetik rezonans görüntüleme (MRG) taramalarında görülemeyen yaralanmaların yaygın ve ince doğası nedeniyle her yıl tanı konulamamaktadır. Beyin hasarının radyolojik kanıt bu eksikliği difüzyon MRG gibi daha gelişmiş görüntüleme tekniklerinin gelişmesine yol açmıştır, hangi mikroyapısal değişikliklere daha duyarlı3.
Difüzyon MRG mikroyapının in vivo haritalama sağlar, ve bu MRI tekniği TBI çalışmalarda yaygın olarak kullanılmıştır4,5,6. Difüzyon tensorundan, fraksiyonel aizotropi (FA) ve ortalama difüzivite (MD) yaralanma sonrası mikroyapısal organizasyondaki değişimi ölçmek için hesaplanır. mTBI hastalarında son değerlendirmeleri FA artışlar rapor ve yaralanma sonrası MD azalır, hangi aksonal şişlik göstergesi olabilir7. Aksine, MD artışlar ve FA azalır da bulunur ve ödem oluşumu, aksonal dejenerasyon, ya da lif yanlış hizalama / bozulma8aşağıdaki parankimal yapıda bozulmalar underlie önerilmiştir 8 . Bu karışık bulgular, farklı etki ve şiddet türlerinin (örneğin, rotasyon-ivmelenme, künt kuvvet travması, patlama yaralanması veya eskisinin kombinasyonu) kaynaklanan mTBI’nin önemli klinik heterojenliği ile kısmen açıklanabilir. Ancak, şu anda mikroyapısal organizasyonda değişikliklerin altında yatan patoloji ve biyolojik/hücresel temel hakkında net bir fikir birliği bulunmamaktadır.
Hayvan modelleri, TBI’den sonra biyolojik yaralanma ve onarım mekanizmalarını daha ayrıntılı olarak araştırmak için standart ve kontrollü bir ortam sağlar. TBI için çeşitli deneysel modeller geliştirilmiştir ve insan TBI farklı yönlerini temsil (örneğin, odak vs diffüz travma veya travma rotasyonel kuvvetlerin neden olduğu)9,10. Yaygın olarak kullanılan hayvan modelleri kontrollü kortikal etki (CCI) ve lateral sıvı perküsyon yaralanması (LFPI) modelleri11,12içerir. Deneysel parametreler iyi kontrol edilebilir rağmen, Bu modeller beyin ortaya çıkarmak için bir kraniyotomi kullanmak. Kraniyotomiler veya kafatası kırıkları mTBI’de yaygın olarak görülmez; bu nedenle, bu deneysel modeller mTBI taklit etmek için geçerli değildir. Marmarou ve ark.13 tarafından geliştirilen darbe ivme modeli, belirli bir yükseklikten bir kask tarafından korunan farenin kafasına bırakılan bir ağırlığı kullanır. Bu hayvan modeli hafif travma sürdüren hastalarda görüldüğü gibi benzer mikroyapısal değişiklikler ve bilişsel bozukluklar neden olur. Bu nedenle, bu Marmarou kilo damla modeli diffüz mTBI14için görüntüleme biyobelirteçleri araştırmak için uygundur,15.
Bu rapor, Marmarou kilo düşürme modelini kullanarak bir mTBI sıçan modelinde ileri difüzyon MRG uygulamasını göstermektedir. İlk olarak hafif ve diffüz travmanın nasıl indüklenebildiğini gösteren difüzyon tensor görüntüleme (DTI) modeli kullanılarak analiz yapılır. Daha gelişmiş difüzyon modelleri [yani difüzyon kurtoz görüntüleme (DKI) ve beyaz madde yolu bütünlüğü (WMTI) modeli] kullanımı ile spesifik biyolojik bilgiler elde edilir. Özellikle, hafif travma ve mikroyapısal değişiklikler sonra hipokampus konvansiyonel T2 ağırlıklı MRG ve gelişmiş difüzyon görüntüleme protokolü kullanılarak değerlendirilir.
mTBI genellikle BT ve konvansiyonel MRG taramalarında anormallik olmayan yaygın ve ince bir yaralanmanın sonucu olduğundan, hafif bir travma sonrası mikroyapısal hasarın değerlendirilmesi zor olmaya devam etmektedir. Bu nedenle, travmanın tam boyutunu görselleştirmek için daha gelişmiş görüntüleme tekniklerine ihtiyaç vardır. TBI araştırmalarında difüzyon manyetik rezonans görüntüleme uygulaması son on yılda daha fazla ilgi kazanmıştır, difüzyon tensor görüntüleme en sık kullanılan<su…
The authors have nothing to disclose.
Yazarlar Araştırma Vakfı teşekkür etmek istiyorum – Flanders (FWO) Bu çalışmayı desteklemek için (Hibe numarası: G027815N).
Induction of trauma | |||
0.9% NaCl physiologic solution | B Braun | 394496 | |
brass weight 450g | custom made | custom made | diamter 18mm and 210 mm height |
catheter | Terumo | Versatus-W | 26G |
ethilon II | Ethicon | EH7824 | FS-3, 4-0, 3/8, 16mm |
Matrass | Foam to Size | Type E | |
Plexiglas tube | ISPA Plastics | 416564 | M1 PMMA XT GOO tube 25×19 mm (inner diamter 19 mm, minimal length of 1.50 m) |
Preclinical CT scanner | Molecubes | X-cube | |
Steel helmet | custom made | custom made | diameter 10 mm and 3 mm thickness |
Vetbond Tissue Adhesive | 3M | 1469SB | |
Vetergesic (buprenorphin) | EcuPhar | VETERG20 | 0.05 mk/kg |
Xylocaine 2% gel | AstraZeneca | Xylocaine 2% | gel |
Xylocaine (lidocain 2%) | Aspen/AstraZeneca | Xylocaine 2% gel | 100 μl injection |
Diffusion MRI | |||
Preclinical MRI acquisition software | Bruker Biospin MRI GmbH | Z400_PV51_CENTOS55 | ParaVision 5.1 MRI software |
Preclinical MRI scanner | Bruker Biospin MRI GmbH | PharmaScan 70/16 | 7T MRI scanner |
Quadrature volume coil | Bruker Biospin MRI GmbH | RF RES 300 1H 075/040 QSN TR | Model No: 1P T13161C3 |
Small animal physiological monitoring unit | Rapid Biomedical | EKGHR02-0571-043C01 | Unit for respiratory monitoring |
Water-based heating unit | Thermo Fisher Scientific | Haake S 5P | Model No: 1523051 |
Anaesthesia | |||
Anaesthesia movable unit | Veterenary technics | BDO – Medipass, Ijmuiden | |
isoflurane: Isoflo | Zoetis | B506 | |
Oxygen generator | Veterenary technics | 7F-3 | BDO – Medipass, Ijmuiden |
Diffusion image processing | |||
Amide | http://amide.sourceforge.net | Version 1.0.5. | Medical Imaging Data Examiner Toolbox (Loening AM, Gambhir SS, " AMIDE: A Free Software Tool for Multimodality Medical Image Analysis", Molecular Imaging, 2(3):131-137, 2003) |
ExploreDTI | http://www.exploredti.com | Version 4.8.6 | Toolbox for (pre-)processing and analysis of diffusion weighted MR images (Leemans A, Jeurissen B, Sijbers J, and Jones DK. ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. In: 17th Annual Meeting of Intl Soc Mag Reson Med, p. 3537, Hawaii, USA, 2009) |
MRtrix3 | http://www.mrtrix.org | Version 3.0_RC3-86-g4b523b41 | Toolbox for (pre-)processing and analysis of diffusion weighted MR images |