As bactérias codificam mecanismos diversos para acoplar na competição interbacteriana. Aqui, apresentamos um protocolo baseado na cultura para caracterizar interações competitivas entre isolados bacterianos e como eles impactam a estrutura espacial de uma população mista.
Este manuscrito descreve um ensaio de coincubação à base de cultura para detectar e caracterizar interações competitivas entre duas populações bacterianas. Este método emprega plasmíos estáveis que permitem que cada população seja diferencialmente marcada com capacidades de resistência a antibióticos distintas e proteínas fluorescentes para seleção e discriminação visual de cada população, respectivamente. Aqui, nós descrevemos a preparação e a coincubação de tensões competindo do fischeri do Vibrio , a imagem latente da microscopia de fluorescência, e a análise quantitativa dos dados. Essa abordagem é simples, produz resultados rápidos e pode ser usada para determinar se uma população mata ou inibe o crescimento de outra população, e se a competição é mediada por uma molécula diffusible ou requer contato direto com células celulares. Como cada população bacteriana expressa uma proteína fluorescente diferente, o ensaio permite a discriminação espacial de populações concorrentes dentro de uma colônia mista. Embora os métodos descritos sejam realizados com a bactéria simbiótica V. fischeri utilizando condições otimizadas para esta espécie, o protocolo pode ser adaptado para a maioria dos isolados bacterianos culturáveis.
Este manuscrito descreve um método baseado em cultura para determinar se dois isolados bacterianos são capazes de interações competitivas. Ao estudar populações mistas, é importante avaliar em que medida os isolados bacterianos interagem, particularmente se os isolados estão competindo diretamente através de mecanismos de interferência. A competição de interferência refere-se a interações em que uma população inibe diretamente o crescimento ou mata uma população concorrente1. Essas interações são importantes para se identificar, pois podem ter efeitos profundos sobre a estrutura e a função de uma comunidade microbiana2,3.
Os mecanismos para a competição microbiana foram descobertos extensamente nos genomas das bactérias dos ambientes diversos que incluem bactérias host-associadas e Free-Living4,5,6,7, 8,9. Uma variedade de estratégias da competição foi descrita10,11 que incluem mecanismos diffusible, tais como produtos químicos bactericida1,12 e peptídeos antimicrobianos secretado13 , bem como mecanismos dependentes de contato que necessitam de contato celular para transferir um efetor inibitório para as células-alvo9,14,15,16,17 ,18.
Embora as coincubações baseadas na cultura sejam comumente usadas na microbiologia5,8,19, este manuscrito descreve como usar o ensaio para caracterizar o mecanismo de competição, bem como sugestões para adaptar o protocolo para uso com outras espécies bacterianas. Além disso, este método descreve múltiplas abordagens para analisar e apresentar os dados para responder a diferentes questões sobre a natureza das interações competitivas. Embora as técnicas descritas aqui fossem usadas previamente para identificar o mecanismo interbacteriano da matança que subjacente a competição intraespecífica entre tensões simbiótica de bactérias coisolated do fischeri do Vibrio 19, são apropriadas para muitas espécies bacterianas que incluem isolados ambientais e micróbios patogénicos humanos, e podem ser utilizadas para avaliar mecanismos competitivos Contact-dependent e diffusible. As etapas no protocolo podem exigir otimização para outras espécies bacterianas. Dado que mais sistemas modelo estão expandindo seus estudos além do uso de organismos isogênicos para incluir diferentes genótipos10,16,20,21, este método será um recurso valioso para os investigadores que procuram compreender como a concorrência Impacta os sistemas multiestirpe ou multiespécies.
O ensaio de coincubação descrito acima fornece um método poderoso para descobrir a competição interbacteriana. Essa abordagem permitiu a identificação da competição intraespecífica entre os isolados de V. fischeri e a caracterização do mecanismo competitivo19. Embora o método descrito foi otimizado para a bactéria Marinha V. fischeri, pode ser facilmente modificada para acomodar outras espécies bacterianas, incluindo isolados clínicos e ambientais. É importante n…
The authors have nothing to disclose.
Gostaríamos de agradecer aos revisores por seu feedback útil. A.N.S. foi apoiado pela Fundação Gordon e Betty Moore através de Grant GBMF 255, 3 para a Fundação de pesquisa de ciências biológicas.
1.5 mL Microcentrifuge Tubes | Fisher | 05-408-129 | |
10 μL multichannel pipette | |||
100 μL multichannel pipette | |||
300 μL multichannel pipette | |||
10 μL single channel pipette | |||
20 μL single channel pipette | |||
200 μL single channel pipette | |||
1000 μL single channel pipette | |||
24-well plates | Fisher | 07-200-84 | sterile with lid |
96-well plates | VWR | 10062-900 | sterile with lid |
Calculator | |||
Chloramphenicol | Sigma | C0378 | stock (20 mg/mL in Ethanol); final concentration in media (2 μg /mL LBS) |
Fluorescence dissecting microscope with camera and imaging software | |||
forceps | Fisher | 08-880 | |
Kanamycin Sulfate | Fisher | BP906-5 | stock (100 mg/mL in water, filter sterilize); final concentration in media (1 μg/mL LBS) |
Nitrocellulose membrane (FS MCE, 25MM, NS) | Fisher | SA1J788H5 | 0.22 μm nitrocellulose membrane (pk of 100) |
petri plates | Fisher | FB0875713 | sterile with lid |
Spectrophotometer | |||
Semi-micro cuvettes | VWR | 97000-586 | |
TipOne 0.1-10 μL starter system | USA Scientific | 1111-3500 | 10 racks |
TipOne 200 μL starter system | USA Scientific | 1111-500 | 10 racks |
TipOne 1000 μL starter system | USA Scientific | 1111-2520 | 10 racks |
Vortex | |||
Name | Company | Catalog Number | Comments |
LBS media | |||
1M Tris Buffer (pH ~7.5) | 50 mL 1 M stock buffer (62 mL HCl, 938 mL DI water, 121 g Trizma Base) | ||
Agar Technical | Fisher | DF0812-17-9 | 15 g (Add only for plates) |
DI water | 950 mL | ||
Sodium Chloride | Fisher | S640-3 | 20 g |
Tryptone | Fisher | BP97265 | 10 g |
Yeast Extract | Fisher | BP9727-2 | 5 g |