Summary

用于研究拉帕霉素/mTOR相互作用的半定量药物亲和反应目标稳定性 (DARTS) 测定

Published: August 27, 2019
doi:

Summary

在这项研究中,我们通过监测蛋白质稳定性的变化和估计蛋白质-配体相互作用的亲和力,增强了DARTS实验的数据分析能力。相互作用可以绘制成两条曲线:蛋白质解解曲线和剂量依赖曲线。我们使用 mTOR-拉帕霉素相互作用作为示例案例。

Abstract

药物亲和力响应目标稳定性 (DARTS) 是检测新型小分子蛋白靶点的有力方法。它可用于验证已知的小分子-蛋白质相互作用,并找到天然产物的潜在蛋白质靶点。与其他方法相比,DARTS 使用原生、未经修饰的小分子,操作简单易行。在这项研究中,我们通过监测蛋白质稳定性的变化和估计蛋白质-配体相互作用的亲和力,进一步提高了DARTS实验的数据分析能力。蛋白质-配体相互作用可以绘制成两条曲线:蛋白质解解曲线和剂量依赖曲线。我们使用 mTOR-拉帕霉素相互作用作为建立我们协议的典范案例。从蛋白溶酶曲线中,我们看到,通过蛋白酶抑制mTOR的蛋白解酶被雷帕霉素的存在所抑制。剂量依赖曲线使我们能够估计雷帕霉素和 mTOR 的结合亲和力。该方法可能是准确识别新型靶蛋白和优化药物靶向的一种强大而简单的方法。

Introduction

识别小分子靶蛋白对于机械性理解和开发潜在的治疗药物1,2,3至关重要。亲和色谱作为识别小分子靶蛋白的经典方法,取得了良好的效果4,5。然而,这种方法有局限性,因为小分子的化学修饰往往导致结合特异性或亲和力的减少或改变。为了克服这些限制,最近已经开发并应用了几种新的策略来识别小分子目标,而不需要对小分子进行化学修饰。这些用于无标签小分子目标识别的直接方法包括药物亲和力响应靶稳定(DARTS)6、蛋白质从氧化率(SPROX)7的稳定性、细胞热移位测定(CETSA)8 ,9和热蛋白酶分析 (TPP)10。这些方法是非常有利的,因为它们使用天然的,未经修饰的小分子,并仅依靠直接结合相互作用,以找到目标蛋白质11。

在这些新方法中,DARTS是一种相对简单的方法,大多数实验室都可以轻松采用。DARTS 取决于配体结合蛋白相对于未结合的蛋白质表现出对酶降解的经修饰的易感性的概念。通过液相色谱-质谱法(LC-MS/MS)检查SDS-PAGE凝胶中改变的带状,可以检测出新的靶蛋白。该方法已成功实施,用于识别以前未知的天然产品和药物目标 14、15、16、17、1819.它作为筛选或验证化合物与特定蛋白质20、21结合的手段也非常强大。在这项研究中,我们通过监测小分子的蛋白质稳定性变化和识别蛋白质配体结合亲和力,对实验进行了改进。我们以mTOR-雷帕霉素相互作用为例来演示我们的方法。

Protocol

1. 收集和酶细胞 使用Dulbeco的改性Eagle培养基(DMEM)与10%胎儿牛血清、2 mM谷氨酰胺和1%抗生素一起培育293T细胞。在 37°C 下孵育培养物,在 5% CO2下孵育。注:细胞的生长状态可能会影响后续实验的稳定性。 扩大培养细胞,直到达到80\u201290%汇合。 将345 μL的细胞溶化试剂(见材料表)与25μL的20x蛋白酶抑制剂鸡尾酒、25μL的1M氟化钠、50μL的100mβ-糖酸磷?…

Representative Results

实验的流程图如图1所示。库马西蓝色染色的结果如图2所示。用小分子孵育可以保护蛋白解。发现三个带,似乎通过孵化与雷帕霉素在车辆控制下孵化。蛋白解曲线实验的预期结果如图3所示。作为原理证明,我们检查了经过充分研究的蛋白质mTOR,这是药物雷帕霉素25的目标。西方印迹说明了mTOR蛋白在低蛋白酶中…

Discussion

DARTS 允许利用蛋白质结合对降解的保护作用来识别小分子靶点。DARTS不需要任何化学修饰或小分子的固定26。这允许使用小分子来确定其直接结合蛋白靶点。经典DARTS方法的标准评估标准包括凝胶染色、质谱和西印12、13。经典方法还提到这些数据可以定量分析,但没有提供这样的示例。在这里,我们使用蜂窝热移变测定(CETSA)的原理?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作部分得到了NIH研究资助R01NS103931、R01AR062207、R01AR061484和国防部研究补助金W81XWH-16-1-0482的支持。

Materials

100X Protease inhibitor cocktail Sigma-Aldrich P8340 Dilute to 20X with ultrapure water
293T cell line ATCC CRL-3216 DMEM medium with 10% FBS
Acetic acid Sigma-Aldrich A6283
BCA Protein Assay Kit Thermo Fisher 23225
Calcium chloride Sigma-Aldrich C1016
Cell scraper Thermo Fisher 179693
Coomassie Brilliant Blue R-250 Staining Solution Bio-Rad 1610436
Dimethyl sulfoxide(DMSO) Sigma-Aldrich D2650
GraphPad Prism GraphPad Software Version 6.0 statistical analysis and drawing software
Hydrochloric acid Sigma-Aldrich H1758
ImageJ National Institutes of Health Version 1.52 image processing and analysis software
M-PER Cell Lysis Reagent Thermo Fisher 78501
Phosphate-buffered saline (PBS) Corning R21-040-CV
Pronase Roche PRON-RO 10 mg/ml
Sodium chloride Sigma-Aldrich S7653
Sodium fluoride Sigma-Aldrich S7920
Sodium orthovanadate Sigma-Aldrich 450243
Sodium pyrophosphate Sigma-Aldrich 221368
Trizma base Sigma-Aldrich T1503 adjust to pH 8.0
β-glycerophosphate Sigma-Aldrich G9422

References

  1. Rask-Andersen, M., Masuram, S., Schioth, H. B. The druggable genome: Evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication. Annual Review of Pharmacology and Toxicology. 54, 9-26 (2014).
  2. O’Connor, C. J., Laraia, L., Spring, D. R. Chemical genetics. Chemical Society Reviews. 40 (8), 4332-4345 (2011).
  3. McFedries, A., Schwaid, A., Saghatelian, A. Methods for the elucidation of protein-small molecule interactions. Chemistry & Biology. 20 (5), 667-673 (2013).
  4. Sato, S., Murata, A., Shirakawa, T., Uesugi, M. Biochemical target isolation for novices: affinity-based strategies. Chemistry & Biology. 17 (6), 616-623 (2010).
  5. Sleno, L., Emili, A. Proteomic methods for drug target discovery. Current Opinion in Chemical Biology. 12 (1), 46-54 (2008).
  6. Lomenick, B., et al. Target identification using drug affinity responsive target stability (DARTS). Proceedings of the National Academy of Sciences of the United States of America. 106 (51), 21984-21989 (2009).
  7. Strickland, E. C., et al. Thermodynamic analysis of protein-ligand binding interactions in complex biological mixtures using the stability of proteins from rates of oxidation. Nature Protocols. 8 (1), 148-161 (2013).
  8. Jafari, R., et al. The cellular thermal shift assay for evaluating drug target interactions in cells. Nature Protocols. 9 (9), 2100-2122 (2014).
  9. Martinez Molina, D., et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science. 341 (6141), 84-87 (2013).
  10. Savitski, M. M., et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science. 346 (6205), 1255784 (2014).
  11. Chang, J., Kim, Y., Kwon, H. J. Advances in identification and validation of protein targets of natural products without chemical modification. Natural Product Reports. 33 (5), 719-730 (2016).
  12. Pai, M. Y., et al. Drug affinity responsive target stability (DARTS) for small-molecule target identification. Methods in Molecular Biology. 1263, 287-298 (2015).
  13. Lomenick, B., Jung, G., Wohlschlegel, J. A., Huang, J. Target identification using drug affinity responsive target stability (DARTS). Current Protocols in Chemical Biology. 3 (4), 163-180 (2011).
  14. Xu, L., et al. Precision therapeutic targeting of human cancer cell motility. Nature Communications. 9 (1), 2454 (2018).
  15. Lim, H., et al. A novel autophagy enhancer as a therapeutic agent against metabolic syndrome and diabetes. Nature Communications. 9 (1), 1438 (2018).
  16. Schulte, M. L., et al. Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nature Medicine. 24 (2), 194-202 (2018).
  17. Skrott, Z., et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature. 552 (7684), 194-199 (2017).
  18. Zhang, C., et al. Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis. Proceedings of the National Academy of Sciences of the United States of America. 113 (1), 41-50 (2016).
  19. Chin, R. M., et al. The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature. 510 (7505), 397-401 (2014).
  20. Robinson, T. J., et al. High-throughput screen identifies disulfiram as a potential therapeutic for triple-negative breast cancer cells: interaction with IQ motif-containing factors. Cell Cycle. 12 (18), 3013-3024 (2013).
  21. Aghajan, M., et al. Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase. Nature Biotechnology. 28 (7), 738-742 (2010).
  22. Brunelle, J. L., Green, R. Coomassie blue staining. Methods in Enzymology. 541, 161-167 (2014).
  23. Domon, B., Aebersold, R. Mass spectrometry and protein analysis. Science. 312 (5771), 212-217 (2006).
  24. Hnasko, T. S., Hnasko, R. M. The Western Blot. Methods in Molecular Biology. 1318, 87-96 (2015).
  25. Van Duyne, G. D., Standaert, R. F., Karplus, P. A., Schreiber, S. L., Clardy, J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. Journal of Molecular Biology. 229 (1), 105-124 (1993).
  26. Lomenick, B., Olsen, R. W., Huang, J. Identification of direct protein targets of small molecules. ACS Chemical Biology. 6 (1), 34-46 (2011).
  27. Park, Y. D., et al. Identification of Multiple Cryptococcal Fungicidal Drug Targets by Combined Gene Dosing and Drug Affinity Responsive Target Stability Screening. MBio. 7 (4), (2016).
  28. Qu, Y., et al. Small molecule promotes beta-catenin citrullination and inhibits Wnt signaling in cancer. Nature Chemical Biology. 14 (1), 94-101 (2018).

Play Video

Cite This Article
Zhang, C., Cui, M., Cui, Y., Hettinghouse, A., Liu, C. A Semi-Quantitative Drug Affinity Responsive Target Stability (DARTS) assay for studying Rapamycin/mTOR interaction. J. Vis. Exp. (150), e59656, doi:10.3791/59656 (2019).

View Video