Summary

细菌病原体在细胞和有机水平宿主反应探针中的应用

Published: February 22, 2019
doi:

Summary

我们描述了可用于分析主机编码因子活性的体外和体内感染检测。

Abstract

细菌病原体有多种策略, 一旦在真核细胞中存活和增殖。所谓的 “细胞增生李斯特菌” 病原体(单核细胞增生李斯特菌、志贺氏菌、克氏菌、杜拉伦斯法郎和环结节) 可进入受感染的细胞溶胶。物理和酶降解的主要空泡膜。一旦进入细胞溶胶, 这些病原体既会增殖, 又会产生足够的机械力, 穿透宿主细胞的质膜, 从而感染新的细胞。在这里, 我们展示了 l . 单核细胞基因 (lm) 细胞感染周期的这一结束步骤如何通过成菌性系和流式细胞术来量化, 并举例说明病因和宿主编码因素是如何影响这一点的。过程。我们还显示了体外感染的培养细胞的 lm 感染动力学与体内感染小鼠的肝细胞的lm感染动力学的密切对应关系。这些基于功能的检测相对简单, 可以很容易地扩展到基于发现的高通量屏幕的真核细胞功能的调制器。

Introduction

基于感染的实验模型具有内在的挑战性, 因为它们依赖于宿主和病原体的起始状态条件、各种病原体感染策略以及难以归因病原和宿主驱动的过程基于结果。单核细胞增生李斯特菌(lm) 由于其遗传和微生物的可追踪性、快速和持续的细胞感染策略以及相对清晰的特性, 已成为一种理想的病原体, 可以探测宿主防御反应。其纤维素和有机水平的感染表型之间的关系。lm的细胞感染通过四个不同的阶段1: (i) 细胞入侵, 结束与lm被封闭在一个液泡内;(二) 以lm为导向溶解液泡膜, 并将lm 释放到细胞溶胶中;(iii) 组织内的复制;(iv) 质膜的物理渗透, 导致直接相邻的细胞 (如上皮细胞) 的感染, 或在单生细胞中, 将lm释放到细胞外环境中。每个阶段都是由特定的 lm编码因素 (称为 “毒力因素”) 推动的, 这些因素一旦被删除, 会导致细胞和动物模型的感染缺陷。这种一般的感染策略是由一些所谓的 “细胞质” 病原体2独立进化而来的。

菌落形成单元 (cfu) 检测被广泛用于评估体外 (即细胞) 和体内 (即有机) 感染结果。除了高灵敏度, 特别是对体内感染, cfu 检测提供了一个明确的读数病原体入侵和细胞内存活/增殖。cfu 检测已被广泛用于分析影响感染的lm和宿主细胞决定因素。尽管这些先前的研究提供了丰富的信息, 以分析细胞入侵和结肠内复制, cfu 的检测, 据我们所知, 还没有被用来跟踪第四阶段的lm感染过程: 细胞逃逸。在这里, 我们描述了相对简单的方法, 如何监测细胞逃逸 (以下简称 “出现”) 可以通过 cfu 分析 (以及流式细胞术), 并展示了如何病理和宿主编码的因素如何调节这个阶段的lm感染周期。对细胞lm感染周期的终末期进行分析, 可以确定更多的病原体和宿主细胞感染特有的因素和活动。

Protocol

根据所有适当的政府关于美国国立卫生研究院实验动物护理和使用的准则, 对老鼠进行了人道的治疗, 迈阿密大学动物护理机构批准了它们的使用和使用委员会 (议定书 16-053)。 1. 准备感染细胞 在 dmem 组织培养基中传播小鼠巨噬细胞样细胞系 raw 264.7, 辅以10% 的胎儿小牛血清 (以下简称 dmemce/fcs), 使用125ml 瓶和组织培养孵化器保持在 37°c% co2. 感染前一天, ?…

Representative Results

评估病原体和宿主编码因素对细胞感染的影响使用上述感染条件, 在与培养的巨噬细胞共同培养1.5 小时后, 将有0.15 的输入野生类型lm恢复 (图 1a)。在随后的1.5 小时共同孵化 (感染后 3小时, hpi) 中, 可行的lm的恢复增加了 4倍, 从 3 hpi 增加了4倍到 6 hpi, 存活可行的lm的恢复又增加了7.5倍。由于细胞不溶于细…

Discussion

由于其快速和持续的细胞感染计划, lm是一个理想的病原体, 探索细胞活动, 影响感染。已经确定了一些对lm细胞感染 111213、14的积极或消极影响的宿主因素。在我们的实验室中表征的两个这样的宿主因子, 即 Perforin-2 和 heme 管制抑制剂 (p2 和 hi), 调节了 lm感染过程的显著特征。?…

Disclosures

The authors have nothing to disclose.

Materials

ACK Lysing Buffer Gibco  A1049201
ArC Amine Reactive Compensation Beads  Life Technologies A10346
BHI (Brain Heart Infusion) broth EMD Milipore 110493
Cell Strainer, 70 µm VWR 10199-656
Collagenase D Roche 11088858001
DMEM media  Gibco  11965-092
FACS tubes  BD Falcon 352054
FBS – Heat Inactivated  Sigma-Aldrich F4135-500ML
Hanks’ Balanced Salt solution Sigma-Aldrich H6648-6X500ML
LB agar Grow Cells MS MBPE-4040
LIVE/DEAD Fixable Yellow Dead Cell Stain kit  Life Technologies L349S9
Rhodamine Phalloidin  Thermo Fischer R415
SP6800 Spectral Analyzer Sony
Syringe 28G 1/2" 1cc BD 329461
TPP Tissue Culture 48 Well Plates  MIDSCI TP92048
TPP Tissue Culture 6 Well Plates  MIDSCI TP92406
UltraComp eBeads eBioscience 01-2222-42
Antigen
CD11b  Biolegend Flurochrome = PE Cy5, Dilution = 1/100, Clone = M1/70
CD11c Biolegend Flurochrome = AF 647, Dilution = 1/100, Clone = N418
CD45 Biolegend Flurochrome = APC Cy7, Dilution = 1/100, Clone = 30-F11
F4/80 Biolegend Flurochrome = PE, Dilution = 1/100, Clone = BM8
Live/Dead Invitrogen Flurochrome = AmCyN, Dilution = 1/100
Ly6C Biolegend Flurochrome = PacBlue, Dilution = 1/200, Clone = HK1.4
MHC II Biolegend Flurochrome = AF 700, Dilution = 1/200, Clone = M5/114.15.2
NK 1.1 Biolegend Flurochrome = BV 605, Dilution = 1/100, Clone = PK136

References

  1. Freitag, N. E., Port, G. C., Miner, M. D. Listeria monocytogenes – from saprophyte to intracellular pathogen. Nature Review Microbiology. 7 (9), 623-628 (2009).
  2. Ray, K., Marteyn, B., Sansonetti, P. J., Tang, C. M. Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nature Review Microbiology. 7 (5), 333-340 (2009).
  3. Miner, M. D., Port, G. C., Freitag, N. E. Functional impact of mutational activation on the Listeria monocytogenes central virulence regulator PrfA. Microbiology. 154, 3579-3589 (2008).
  4. McCormack, R., et al. Perforin-2 Protects Host Cells and Mice by Restricting the Vacuole to Cytosol Transitioning of a Bacterial Pathogen. Infection and Immunity. 84, 1083-1091 (2016).
  5. Gregory, S. H., et al. Complementary adhesion molecules promote neutrophil-Kupffer cell interaction and the elimination of bacteria taken up by the liver. Journal of Immunology. 168, 308-315 (2002).
  6. Shi, C., et al. Monocyte trafficking to hepatic sites of bacterial infection is chemokine independent and directed by focal intercellular adhesion molecule-1 expression. Journal of Immunology. 184, 6266-6274 (2010).
  7. Pitts, M. G., Combs, T. A., D’Orazio, S. E. F. Neutrophils from Both Susceptible and Resistant Mice Efficiently Kill Opsonized Listeria monocytogenes. Infection and Immunity. 86, 00085 (2018).
  8. Carr, K. D., et al. Specific depletion reveals a novel role for neutrophil-mediated protection in the liver during Listeria monocytogenes infection. European Journal of Immunology. 41 (9), 2666-2676 (2011).
  9. Blériot, C., et al. Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity. 42 (1), 145-158 (2015).
  10. Jones, G. S., D’Orazio, S. E. F. Monocytes are the predominant cell type associated with Listeria monocytogenes in the gut, but they do not serve as an intracellular growth niche. Journal of Immunology. 198, 2796-2804 (2017).
  11. Agaisse, H., et al. Genome-wide RNAi screen for host factors required for intracellular bacterial infection. Science. 309, 1248-1251 (2005).
  12. Cheng, L. W., et al. Use of RNA interference in Drosophila S2 cells to identify host pathways controlling compartmentalization of an intracellular pathogen. Proceedings of the National Academy of Science U S A. 102, 13646-13651 (2005).
  13. Singh, R., Jamieson, A., Cresswell, P. GILT is a critical host factor for Listeria monocytogenes infection. Nature. 455, 1244-1247 (2008).
  14. Burrack, L. S., Harper, J. W., Higgins, D. E. Perturbation of vacuolar maturation promotes listeriolysin O-independent vacuolar escape during Listeria monocytogenes infection of human cells. Cellular Microbiology. 11, 1382-1398 (2009).
  15. Shrestha, N., et al. The host-encoded Heme Regulated Inhibitor (HRI) facilitates virulence-associated activities of bacterial pathogens. PLoS One. 8, 68754 (2013).
  16. Bahnan, W. The eIF2α Kinase Heme-Regulated Inhibitor Protects the Host from Infection by Regulating Intracellular Pathogen Trafficking. Infection and Immunity. 20, 00707 (2018).
  17. Kortebi, M., et al. Listeria monocytogenes switches from dissemination to persistence by adopting a vacuolar lifestyle in epithelial cells. PLoS Pathogen. 13, 1006734 (2017).
  18. VanCleave, T. T., Pulsifer, A. R., Connor, M. G., Warawa, J. M., Lawrenz, M. B. Impact of Gentamicin Concentration and Exposure Time on Intracellular Yersinia pestis. Frontiers in Cellular and Infection Microbiology. 7, 505 (2017).

Play Video

Cite This Article
Gayle, P., Freitag, N. E., Strbo, N., Schesser, K. Using a Bacterial Pathogen to Probe for Cellular and Organismic-level Host Responses. J. Vis. Exp. (144), e58775, doi:10.3791/58775 (2019).

View Video