Summary

小鼠大脑中耳蜗的定位

Published: March 07, 2019
doi:

Summary

胁迫位点是参与各种生理过程的一个小的神经元簇。在这里, 我们描述了一个方案, 准备小鼠大脑部分, 用于研究蛋白质和金属在这个细胞核。

Abstract

逼位点 (lc) 是去甲肾上腺素产生神经元的主要枢纽, 调节许多生理功能。lc 的结构或功能异常会影响几个大脑区域, 包括皮层、海马和小脑, 并可能导致抑郁、双相情感障碍、焦虑以及帕金森病和阿尔茨海默病。这些疾病通常与金属失平衡有关, 但金属在 lc 中的作用只被部分理解。需要对 lc 进行形态和功能研究, 以更好地了解人体病理和金属的贡献。小鼠是一种广泛使用的实验模型, 但小鼠 lc 体积小 (直径约 0.3 mm), 对于非专家来说很难识别。在这里, 我们描述了一个逐步免疫组织化学为基础的协议, 以本地化在小鼠大脑中的 lc。多巴胺-β-羟化酶 (dbh), 或者酪氨酸羟化酶 (th), 这两种酶在 lc 中高度表达, 被用作大脑切片的免疫组织化学标志物。与含 lc 切片相邻的部分可用于进一步分析, 包括用于形态学研究的组织学、代谢检测以及 x 射线荧光显微镜 (xfm) 的金属成像。

Introduction

费鲁厄斯 (lc) 位点 (lc) 是脑干的一个重要区域, 也是去甲肾上腺素 (ne) 产生的主要部位1。lc 将整个大脑2的投影发送到皮层、海马体和小脑3 , 并调节主要的生理过程, 包括生理节律4,5, 注意力和记忆6,压力7, 认知过程8, 和情绪9,10。lc 功能障碍与神经和神经精神障碍有 11例, 包括帕金森病 121314、阿尔茨海默病14、抑郁症15 16,17, 双相情感障碍18,19,焦虑20,21, 22,23,24. 鉴于这些作用, 对 lc 的分析对于研究其功能和功能障碍至关重要。

小鼠被广泛用于生理和病理生理过程的研究。由于体积小, 小鼠 lc 的平均直径约为 300μm, 因此难以定位结构。在脑切片过程中, lc 很容易在冠状或矢状切片中丢失。现有的研究描述了 lc 在动物中的识别没有提供一个分步的协议, 一个非专家可以遵循1,25。因此, 为了提供 lc 本地化的指导, 我们描述了一个协议, 我们开发的协议在多个应用程序的鼠标大脑中定位此区域 (图 1, 图 2, 图 3)。该方案应用精心控制的脑切片和免疫组织化学检测 dbh26,27, 或交替 th24, 这两种酶在 lc28中高度富集。一旦 lc 通过免疫组织化学定位, 相邻的大脑切片可用于进一步的研究, 包括形态学和代谢分析, 以及通过 x 射线荧光显微镜 (xfm)29进行金属成像研究。我们将 xfm 描述为本协议中的一个示例 (图 3)。

Protocol

约翰·霍普金斯大学动物护理和使用 (acuc) 议定书编号 m017m385 批准了对动物的研究。 1. 脑切片 为了固定, 用3% 异氟醚麻醉小鼠。 用异氟醚滴浸泡棉球, 并将其放入15毫升的微离心管中。将动物的鼻子放入试管中, 让其吸入异氟醚。检查麻醉的深度是否缺乏对脚趾夹紧的反应。 将动物放在背部, 并通过用 t 针固定其四肢, 同时进入其腹部, 使其固定?…

Representative Results

金属稳态的变化 (如铜、铁、锌和锰) 经常在神经紊乱中观察到, 包括 lc34、35的变化。因此, 确定大脑中的金属含量对于了解疾病机制是必要的。使用所述协议生成的大脑部分可用于量化 lc 中的铜和其他金属的水平, 并将其与 lc 以外区域的水平进行比较。(图 3)。在我们的例子中, 测量了通过 lc、磷酸盐、钾?…

Discussion

正确定位样品是本协议中的关键一步。因为我们使用大脑背侧表面的解剖特征来定位 lc (小脑和下大肠杆菌之间的边界), 因此正确对齐各个部分是很重要的。这就需要小心, 把大脑适当地设置在老鼠的大脑切片器矩阵中。我们建议切割 ~ 500μm 以上的组织前和后 lc, 以避免丢失细胞核。最常见的错误是削减太少的部分, 导致完全错过 lc。因此, 对于第一次遵循此协议, 我们建议切割超过必要的部分。仔…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢 abigael muchdididsi 维持了老鼠的殖民地。argonne 国家实验室先进光子源的使用得到了美国能源部、科学办公室、基础能源科学办公室的支持, 合同号为: de-ac02-06ch11357。我们感谢 olga antipova 和 stefan vogt 博士在高级光子源的用户支持和帮助。这项工作由国家卫生研究所向 sl 提供的赠款2r01gm101502 资助。

Materials

Adult mouse brain slicer matrix Zivic Instruments BSMAS001-1
Anti-rabbit secondary antibody, Alexa Fluor 488 (source – donkey) Thermo Fisher Scientific A-21206
Charged glass slides Genesee 29-107
Confocal microscope Zeiss LSM 800
Cryostat Microm GmbH HM 505E
Cryostat cutting blades Thermo Fisher Scientific MX35
Scissors Mini, 9.5cm Antech Diagnostcs 503241
DAPI (4',6-diamidino-2-phenylindole) Sigma-Aldrich D9542-10MG
Dopamine β-hydroxylase (DBH) antibody – inhouse production (source – rabbit) B. Eipper
Dopamine β-hydroxylase (DBH) antibody – commercially availabe (source – rabbit) Cell Signaling 8586
Falcon tubes, 50ml USA Scientific 339652
Forane (isofluorane) Baxter NDC 1019-360-60
Forceps Micro Adson Antech Diagnostcs 501245
Hardset mounting media EM sciences 17984-24
Microscope Pascal LSM 5
Multi-well plates, 24 wells Thermo Fisher Scientific 930186
Optimal cutting temperature compound (OCT) VWR/ tissue tech 102094-106
Paraformaldehyde (PFA)/ formalin 10% Fisher Scientific SF98-4
Peel-A-Way disposable embedding molds Polysciences Inc. 18646A
Pencil brush
Phosphate buffered saline (PBS) Life Tech 14190250
Razor blades Amazon ASIN: B000CMFJZ2
Spatulas Antech Diagnostcs 14374
T pins Office Depot 344615
The Mouse Brain in Stereotaxic Coordinates, Paxinos and Franklin, 3rd Edition Amazon ISBN: 978-0123694607
Triton-X 100 (to prepare PBSD) Sigma-Aldrich T8787
Tween 20 Sigma-Aldrich P7949-500ml
Tyrosine hydroxylase (TH) antibody (source – rabbit) EMD Millipore AB152
Ultralene thin film for XRF SPEX Sample Prep 3525
Wide-field fluorescent microscope Zeiss Axio Zoom.V16

References

  1. Robertson, S. D., Plummer, N. W., de Marchena, J., Jensen, P. Developmental origins of central norepinephrine neuron diversity. Nature neuroscience. 16, 1016-1023 (2013).
  2. Kobayashi, R. M., Palkovits, M., Jacobowitz, D. M., Kopin, I. J. Biochemical mapping of the noradrenergic projection from the locus coeruleus. A model for studies of brain neuronal pathways. Neurology. 25, 223-233 (1975).
  3. Olson, L., Fuxe, K. On the projections from the locus coeruleus noradrealine neurons: the cerebellar innervation. Brain research. 28, 165-171 (1971).
  4. Costa, A., Castro-Zaballa, S., Lagos, P., Chase, M. H., Torterolo, P. Distribution of MCH-containing fibers in the feline brainstem: Relevance for REM sleep regulation. Peptides. , 50-61 (2018).
  5. Semba, J., Toru, M., Mataga, N. Twenty-four hour rhythms of norepinephrine and serotonin in nucleus suprachiasmaticus, raphe nuclei, and locus coeruleus in the rat. Sleep. 7, 211-218 (1984).
  6. Takeuchi, T., et al. Locus coeruleus and dopaminergic consolidation of everyday memory. Nature. 537, 357-362 (2016).
  7. Korf, J., Aghajanian, G. K., Roth, R. H. Increased turnover of norepinephrine in the rat cerebral cortex during stress: role of the locus coeruleus. Neuropharmacology. 12, 933-938 (1973).
  8. Sara, S. J., Segal, M. Plasticity of sensory responses of locus coeruleus neurons in the behaving rat: implications for cognition. Progress in brain research. 88, 571-585 (1991).
  9. Markevich, V. A., Voronin, L. L. Synaptic reactions of sensomotor cortex neurons to stimulation of emotionally significant brain structures]. Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova. 29, 1248-1257 (1979).
  10. File, S. E., Deakin, J. F., Longden, A., Crow, T. J. An investigation of the role of the locus coeruleus in anxiety and agonistic behaviour. Brain research. 169, 411-420 (1979).
  11. Pamphlett, R. Uptake of environmental toxicants by the locus ceruleus: a potential trigger for neurodegenerative, demyelinating and psychiatric disorders. Medical hypotheses. 82, 97-104 (2014).
  12. Wang, J., et al. Neuromelanin-sensitive magnetic resonance imaging features of the substantia nigra and locus coeruleus in de novo Parkinson’s disease and its phenotypes. European journal of neurology. 25, 949-973 (2018).
  13. Oliveira, L. M., Tuppy, M., Moreira, T. S., Takakura, A. C. Role of the locus coeruleus catecholaminergic neurons in the chemosensory control of breathing in a Parkinson’s disease model. Experimental neurology. , 172-180 (2017).
  14. Zarow, C., Lyness, S. A., Mortimer, J. A., Chui, H. C. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Archives of neurology. 60, 337-341 (2003).
  15. Chandley, M. J., et al. Gene expression deficits in pontine locus coeruleus astrocytes in men with major depressive disorder. Journal of psychiatry & neuroscience : JPN. 38, 276-284 (2013).
  16. Bernard, R., et al. Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Molecular psychiatry. 16, 634-646 (2011).
  17. Gos, T., et al. Tyrosine hydroxylase immunoreactivity in the locus coeruleus is elevated in violent suicidal depressive patients. European archives of psychiatry and clinical neuroscience. 258, 513-520 (2008).
  18. Bielau, H., et al. Immunohistochemical evidence for impaired nitric oxide signaling of the locus coeruleus in bipolar disorder. Brain research. 1459, 91-99 (2012).
  19. Wiste, A. K., Arango, V., Ellis, S. P., Mann, J. J., Underwood, M. D. Norepinephrine and serotonin imbalance in the locus coeruleus in bipolar disorder. Bipolar disorders. 10, 349-359 (2008).
  20. Borodovitsyna, O., Flamini, M. D., Chandler, D. J. Acute Stress Persistently Alters Locus Coeruleus Function and Anxiety-like Behavior in Adolescent Rats. 신경과학. 373, 7-19 (2018).
  21. Hirschberg, S., Li, Y., Randall, A., Kremer, E. J., Pickering, A. E. Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats. eLife. 6, (2017).
  22. McCall, J. G., et al. CRH Engagement of the Locus Coeruleus Noradrenergic System Mediates Stress-Induced Anxiety. Neuron. 87, 605-620 (2015).
  23. Borges, G. P., Mico, J. A., Neto, F. L., Berrocoso, E. Corticotropin-Releasing Factor Mediates Pain-Induced Anxiety through the ERK1/2 Signaling Cascade in Locus Coeruleus Neurons. The international journal of neuropsychopharmacology. 18, (2015).
  24. Simone, J., et al. Ethinyl estradiol and levonorgestrel alter cognition and anxiety in rats concurrent with a decrease in tyrosine hydroxylase expression in the locus coeruleus and brain-derived neurotrophic factor expression in the hippocampus. Psychoneuroendocrinology. 62, 265-278 (2015).
  25. Carter, M. E., et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nature. 13, 1526-1533 (2010).
  26. Fan, Y., et al. Corticosterone administration up-regulated expression of norepinephrine transporter and dopamine beta-hydroxylase in rat locus coeruleus and its terminal regions. Journal of neurochemistry. 128, 445-458 (2014).
  27. Xiao, T., et al. Copper regulates rest-activity cycles through the locus coeruleus-norepinephrine system. Nature chemical biology. 14, 655-663 (2018).
  28. Amaral, D. G., Sinnamon, H. M. The locus coeruleus: neurobiology of a central noradrenergic nucleus. Progress in neurobiology. 9, 147-196 (1977).
  29. Ralle, M., et al. Disease at a Single Cell Level: intracellular copper trafficking activates compartment-specific responses in hepatocytes. The Journal of Biological Chemistry. 285, 30875-30883 (2010).
  30. Paxinos, G., Franklin, K. B. J. . The Mouse Brain in Stereotaxic Coordinates. , (2013).
  31. Bonnemaison, M. L., et al. Copper, zinc and calcium: imaging and quantification in anterior pituitary secretory granules. Metallomics : integrated biometal science. 8, 1012-1022 (2016).
  32. Nietzold, T., et al. Quantifying X-Ray Fluorescence Data Using MAPS. Journal of visualized experiments : JoVE. , (2018).
  33. Vogt, S. MAPS: A set of software tools for analysis and visualization of 3D X-ray fluorescence data sets. J. Phys. IV France. 104, 635-638 (2003).
  34. Davies, K. M., et al. Copper pathology in vulnerable brain regions in Parkinson’s disease. Neurobiology of aging. 35, 858-866 (2014).
  35. Davies, K. M., Mercer, J. F., Chen, N., Double, K. L. Copper dyshomoeostasis in Parkinson’s disease: implications for pathogenesis and indications for novel therapeutics. Clinical science. 130, 565-574 (2016).
  36. James, S. A., et al. Quantitative comparison of preparation methodologies for X-ray fluorescence microscopy of brain tissue. Analytical and bioanalytical chemistry. , 853-864 (2011).

Play Video

Cite This Article
Schmidt, K., Bari, B., Ralle, M., Washington-Hughes, C., Muchenditsi, A., Maxey, E., Lutsenko, S. Localization of the Locus Coeruleus in the Mouse Brain. J. Vis. Exp. (145), e58652, doi:10.3791/58652 (2019).

View Video