Aqui, apresentamos um protocolo para projetar e fabricar um embrião de zebrafish põr modelo, seguido por um procedimento detalhado sobre a utilização de tal modelo para alto throughput zebrafish embrião põr em uma placa de 96 poços.
O peixe-zebra é que um organismo reconhecido mundialmente água doce frequentemente usada em biologia do desenvolvimento, toxicologia ambiental e humana doença campos de investigação com ele relacionada. Graças a suas características únicas, incluindo a grande fecundidade, translucidez do embrião, evolução rápida e simultânea, etc., zebrafish embriões são frequentemente utilizados para avaliação de toxicidade em larga escala de produtos químicos e drogas/compostom triagem. Um procedimento de rastreio típico envolve adulto zebrafish desova, seleção de embriões e põr os embriões em placas multi bem. A partir daí, embriões sejam sujeitos a exposição e a toxicidade do produto químico, ou a eficácia dos medicamentos/compostos pode ser avaliada relativamente rápido com base em observações fenotípicas. Entre estes processos, põr de embriões é uma das etapas mais demoradas e trabalhosas que limita o nível de produtividade. Neste protocolo, apresentamos uma inovadora abordagem que faz uso de um modelo arraying 3D-impresso juntamente com vácuo manipulação para acelerar esta etapa trabalhosa. O protocolo neste documento descreve o projeto total do modelo arraying, uma instalação experimental detalhada e procedimento passo a passo, seguido por resultados representativos. Quando implementado, essa abordagem deve provar benéfica em uma variedade de aplicações de pesquisa usando zebrafish embriões como assuntos de teste.
Como um organismo modelo popular, o zebrafish é amplamente utilizado nos campos da medicina e toxicologia1,2,3,4. Em comparação com plataformas em vitro , zebrafish oferecem muito maior complexidade biológica que um ou dois tipos de células não podem oferecer. Além de ser um todo organismo modelo, do zebrafish grande fecundidade, rápido e simultâneo de desenvolvimento embrionário e órgão alta translucidez ter dado este vantagens exclusivas do modelo a ser usado para a toxicidade de grande escala ou drogas/composto5de triagem. As centenas de embriões produzidos por um par de zebrafish adulto cada semana superam qualquer outros modelos todo animais e tornaram apropriado para triagem de alto rendimento.
Um procedimento de rastreio típica usando zebrafish envolve uma quantidade significativa de trabalho manual, tais como adulto zebrafish desova, seleção de embriões e põr os embriões em recipientes adequados, onde eles são sujeitos a exposição através da imersão da água. O desenvolvimento dos embriões é monitorado e pontos de extremidade observáveis como anormalidade, eclodibilidade e mortalidade são muitas vezes avaliados manualmente e usados como a identificação preliminar da toxicidade de produtos químicos ou indicações da eficácia da drogas ou compostos. Para acelerar o processo de triagem, abordagens como a automatizada de imagem e análise de imagem computadorizada tem sido exploradas anteriormente. Por exemplo, microscópios com alto teor de imagem recursos foram adaptados para executar brilhante-campo automatizado ou imagens de fluorescência no zebrafish embriões em vários estágios do desenvolvimento de placas bem 384/966. Dispositivos microfluídicos juntamente com microscópios foram usados para posicionar o zebrafish larvas através de manipulação atual para a imagem latente do cérebro neurônios7. Essas abordagens podem melhorar significativamente a eficiência das aquisições de imagem em comparação com operação manual tradicional. Além disso, com grande número de imagens sendo gerada, ferramentas de análise de imagem também foram desenvolvidas para acelerar o processamento de dados, como demonstrado por Liu et al e Tu et al 8 , 9.
À medida que aumenta o nível de taxa de transferência de imagem e análise de imagem, ficou claro que o passo limitante para a seleção encontra-se no processo de preparação do zebrafish embriões para a exposição, que normalmente significa põr-los em placas de 96 ou 384 poços. Para resolver essa etapa gargalo, guiada por visão robótica foram desenvolvidos pela Mandrell et al 10 e nos11 anteriormente para substituir a movimentação manual, mas os instrumentos foram bastante sofisticado e há uma curva de aprendizagem profunda para implementar essas técnicas. Portanto, para fornecer uma abordagem de fácil de usar torna-se um fator importante para melhorar ainda mais o nível de taxa de transferência de zebrafish triagem e é o principal objetivo deste trabalho.
Neste trabalho, nós projetado e fabricado um embrião põr modelo por impressão 3D. Um modelo tão arraying foi projetado para incriminar o zebrafish embrião em poços que se encaixam com uma padrão placa de 96 poços. Em vez de selecionar embriões e põr os em poço individual um por um, um poderia executar matriz e uma armadilha de embrião todos os 96 embriões em uma placa multifoliada de uma só vez. Usando este modelo e o seguinte protocolo, um poderia aumentar significativamente a eficiência de põr os embriões em chapas multifoliadas, que em termo de aumentar a capacidade de rastreio pelo menos dez vezes, comparada a operação manual. O protocolo descrito abaixo inclui um design global para a põr o modelo, o zebrafish desova, a colheita de embriões e põr. A Figura 1 mostra a concepção global do modelo arraying. A Figura 2 mostra uma visão geral do protocolo passo a passo sobre como usar o modelo, descrito nas partes 3 e 4.
Há duas etapas críticas neste protocolo que exigem muita atenção para uma implementação bem sucedida do modelo 3D-impresso para põr o zebrafish embriões.
O fator mais importante no design do modelo arraying é a armadilha bem. Para garante há apenas um embrião preso em cada poço, um deve prestar atenção para o diâmetro e a profundidade do poço uma armadilha e o diâmetro do furo. O diâmetro recomendado é dentro de 1,5 a 2 vezes o diâmetro de um embrião típico (incluindo o c…
The authors have nothing to disclose.
Este trabalho foi financiado pelo programa “Juventude de 1000plan”, os fundos de inicialização de Tongji University e NSFC Grant # 21607115 e 21777116 (Lin).
Zebrafish Facility | Shanghai Haisheng Biotech Co., Ltd. | Z-A-S5 | |
Mating box | Shanghai Haisheng Biotech Co., Ltd. | ||
Wash Bottle, 500 ml | Sangon Biotech | F505001-0001 | |
Sodium chloride | Vetec | V900058-500G | |
Potassium Chloride | Sinopharm Chemical Reagent Co.,Ltd | 10016318 | |
Calcium chloride | Sinopharm Chemical Reagent Co.,Ltd | 20011160 | |
Sodium bicarbonate | Vetec | v900182-500G | |
Methylene Blue Hydrate | TCI | M0501 | |
Hydrochloric acid | Sinopharm Chemical Reagent Co.,Ltd | 10011008 | |
Sea Salts | Instant Ocean | SS15-10 | |
Pipetter | Fisherbrand | 13-675M | |
Controlled Drop Pasteur Pipet | Fisherbrand | 13-678-30 | |
Microscope | OLYMPUS | SZ61 | |
Biochemical incubator | Shanghai Yiheng Scientific Instrument Co., Ltd. | LRH-250 | |
3D printer | UnionTech | Lite600 | |
Photosensitive resin | UnionTech | UTR9000 | |
Vacuum pump | Shanghai Yukang Scientific Instrument Co., Ltd. | SHB-IIIA | |
Adhesive PCR Plate Seals | Solarbio | YA0245 | |
96 well plate | Costar | 3599 | |
Multi 8-channel pipette 30 – 300 μl | Eppendorf | 3122000.051 | |
Compressed Gas Duster | Shanghai Zhantu Chemical Co., Ltd. | ST1005 | |
DI Water | Thermo | GenPure Pro UV/UF | |
Drying oven | Shanghai Yiheng Scientific Instrument Co., Ltd. | BPG-9106A | |
System water | Water out of the facility’s water system | ||
Egg water | Dilute 60mg “Instant Ocean” sea salts and 0.25 mg/L methylene blue in 1 L DI water | ||
Holtfreter’s solution | Dissolve 7.0 g Sodium chloride (NaCl), 0.4 g Sodium bicarbonate (NaHCO3), 0.1 g Potassium Chloride (KCl), 0.235 g Calcium chloride (CaCl2.2H2O) in 1.9 L DI water. Adjust pH to 7 using HCl and adjust volume to 2 L using Di water |