0.75Ga0.25に基づく平面および弾道ジョセフソン接合部(JJ)の配列からなる量子集積回路(QIC)は、2次元電子ガス(2DEG)として実証される。2次元(2D)JJとQICの製造のための2つの異なる方法について議論し、その後、サブケルビン温度における量子輸送測定のデモンストレーションを行う。
ハイブリッド超伝導半導体(S-Sm)接合部における一貫した量子輸送を形成するためには、2つの異なる材料間に均質でバリアフリーな界面を形成する必要がある。インターフェイスの透明性が高いS-Sm接合部は、トポロジ相(TP)にアクセスするための重要な要件である誘発されたハード超伝導ギャップの観測とマヨラーナゼロなどのエキゾチックな準粒子の観測を容易にします。ハイブリッド システムのモード (MZM) を使用します。TPの観測をサポートし、複雑で分岐した形状の実現を可能にする材料プラットフォームは、量子処理とコンピューティング科学技術において非常に要求が高い。ここでは、2次元材料系を紹介し、ハイブリッド量子集積回路(QIC)の基礎となる半導体二次元電子ガス(2DEG)における近接誘導超伝導を研究する。2DEGは30nmの厚さで0.75Ga0.25量子井戸として、ヘテロ構造の障壁として0.75 Al0.25の間に埋もれている。ニオブ(Nb)膜は、対称、平面および弾道である-Nbジョセフソンジャンクション(JJ)として0.75Ga0.25でNb-を形成する超伝導電極として使用される。JJとQICを形成するために、2つの異なるアプローチが使用されました。長いジャンクションはフォトリソグラフィカルに作られましたが、電子ビームリソグラフィは短いジャンクションの製造に使用されました。磁場Bの有無における温度の関数としての一貫した量子輸送測定について議論する。いずれの装置製造アプローチでも、近接誘導超伝導特性はIn0.75Ga0.25As 2DEGで観察された。より短い長さのeビームリソグラフィカルパターンJJは、はるかに高い温度範囲で誘導された超伝導ギャップの観測をもたらすことが分かった。再現性が高くクリーンな結果は、0.75Ga0.25に基づくハイブリッド 2D JJ と QIC が、量子ウェルとして、実際の複雑でスケーラブルな電子およびフォトニック量子を実現するための有望な材料プラットフォームである可能性があることを示唆しています。回路とデバイス。
ジョセフソン接合部(JJ)は、2つの超伝導体1の間に非超伝導(正常)材料の薄い層を挟むことで形成される。様々な新しい量子電子およびフォトニック回路とデバイスは、JJS2、3、4、5、6、7、8に基づいて構築することができます。 9,10,11,12,13,14,15,16.その中でも、半導体を非超伝導(正常)部分とするJJ、または超伝導体-半導体超伝導体(S-Sm-S)JJは、エキゾチックなマヨラナ粒子の検出後、近年大きな注目を集めています。超伝導体および半導体一次元(1D)ナノワイヤー17、18、19、20、21の界面での電荷ゼロ、22.ナノワイヤーベースのハイブリッドデバイスは、ナノワイヤーの1DジオメトリとそれらのYおよび/またはT構造の製造に限定されています – マヨラナ編組のための必要な要件は、挑戦的な22です。ナノワイヤーの化学的可能性を微調整するには、トポロジ的な相にアクセスするために、いくつかの静電性ゲートを持つJJが必要であり、ナノワイヤーから複雑なデバイス製造にかなり多くの問題を引き起こします。1Dワイヤのスケーラビリティの問題を克服するために、2次元(2D)材料プラットフォームは非常に望ましい19、22です。
2D材料の中で、2次元電子ガス(2DEG)プラットフォームは、電子が半導体ヘテロ構造における2つの異なる材料間の界面に閉じ込められた場合に形成され、最も有望な候補22である。超伝導体と2DEGを組み合わせ、ハイブリッド2D JJを形成することで、トポロジカル量子処理やコンピューティングなどの次世代スケーラブル量子システムの開発に向けた新たな道が開かれる。それらは位相の一貫性のある量子輸送および近接誘発された超伝導を高い伝達確率で支えることができる。この点に関して、我々は20本のワイヤーで制御することができる弾道2D JJの配列から成っているチップ上のQICを示す。各接合部は、超伝導部として2つのNb電極を有し、0.75Ga0.25では通常の部分として半伝導ヘテロ接合部の量子ウェルとして。ウエハは複雑な構造およびネットワーク化されたQICを形成するために容易にパターン化することができる。
In 0.75Ga0.25As 2DEGの利点:(i)比較的大きなg-factor、(ii)強いラシュバスピン軌道結合、(iii)低電子有効質量、および(iv)インジウム組成物を調整することができ、形成を可能にする。高いインターフェイスの透明性を持つJJの23,24,25.ウェーハは最大10cmのダイメーターのディスクとして成長できるため、何千ものハイブリッド2D JJと複雑なQICネットワークを作り出すことができるため、これらの量子デバイスのスケーラビリティの課題を克服できます。
デバイス製造に関する2つの異なるアプローチについて議論する:デバイス1の場合、850nmの長さと4 μm幅の8つの同一および対称JJを含む回路は、フォトリソグラフィ23、24によってパターン化される。装置2は異なった長さの8つのジャンクションを含んでいる。それらはすべて3 μmの同じ幅を持っている。JJはe-bamリソグラフィ25によってパターン化されています。磁場の不在/存在下でのサブケルビン温度範囲での輸送測定を提示します。オンチップQICは、0.75Ga0.25As-Nb JJSの2D Nb-の配列で構成されています。長く短いジャンクションは、ベース温度40mKの希釈冷蔵庫で測定され、液体3彼はそれぞれ300mKの基準温度でクライオスタットを冷却した。デバイスは、ジャンクションDC電圧バイアスに重ね合わされる70 Hzの5μVのAC信号でバイアスされています。 2端子標準ロックイン技術を使用して、デバイス出力AC-current23、24、25を測定します。
超伝導インジウムガリウムヒ素(0.75Ga0.25As)量子ウェルに基づくJJの配列を含むオンチップQICが実証された。スケーラビリティやインターフェースの透明性など、ハイブリッドSm材料システムの2つの重要な課題に取り組みました。高品質と高機動性の成長を含むプロトコルを嘆く2つの重要なステップ0.75Ga0.25半伝導ヘテロ構造における2次元電子ガスと近接誘導超伝導を2DEGに議論23,24,25.
In 0.75Ga0.25GaAs基板のステップグレードのバッファ層と同様に、超伝導体と半導体間の均質なバリアフリー界面の形成は、このようなハイブリッド2D量子回路において重要なステップである。開発。スパッタ付き超伝導フィルムを注意深くエッチングすると、半導体23における誘導超伝導ギャップの検出につながる量子ウェルとして0.75Ga0.25に高透明な接触を作ることができることが実証された。,24歳,25.
既存の方法に関しての意義は、2DハイブリッドJJと回路実現のための提示された技術は、半導体の成長後にMBEチャンバ内の半導体上の超伝導体のインシスト堆積を必要としないことです。完了した 23,24,25.もう一つの意義は、ヘテロ構造ウエハを直径10cmまでのデスクとして成長させることができ、何千ものハイブリッド2Dジャンクションと回路を製造できるため、ハイブリッドS-Sm量子回路およびデバイスのスケーラビリティの課題を克服できることです。22歳,23歳,24歳,25.
量子井戸における誘導超伝導、2D接合部の微分伝導性に関するSGS、および当社の接合部で測定された位相コヒーレント弾道量子輸送は、超伝導に基づくハイブリッド2D接合部および回路を強く示唆する。0.75年Ga0.25として 2DEG はスケーラブルな量子処理とコンピューティング技術のための有望な材料システムを提供します。我々のアプローチは、量子技術に向けた新たな道を開き、次世代の量子プロセッサ23、24、25を実現するためのオンチップトポロジ量子回路の開発への道を開く助けになるかもしれない。
The authors have nothing to disclose.
著者らは、EPSRCからの財政的支援を認め、MQICを付与する。
CompactDAQ Chassis | National Instruments | NI cDAC-9178 | |
DSP Lock-in Amplifier | AMETEK 7265 | 190284-A-MNL-C | |
Dilution refrigerator | Blueforce | Buttom loaded fridge | |
Dilution refrigerator | Oxford | KelvinoxMX40 | Wet-fridge |
Diamond scriber MICROTEC | Karl Suss | HR 100 | |
Dektak Surface Profilometer | Veeco | 3ST | |
Evaporator | Edwards | AUTO 306 | |
Evaporator | Edwards | Coating system E306A | |
3He Cryostat | Oxford | ||
Photoresist Spinner | Headway Research Inc. | EC101DT-R790 | |
Matlab | |||
Mask Aligner | Karl Suss | MJB 3 | |
Source meter | Keithley | 2614B | |
Semiconducting heterostructure | MBE Veeco | Gen III system | MBE Grown wafers |
Wire Bonder | K&S | 4524 |