A protocol for the fabrication of magnetic micro- and nanostructures with spin configurations forming magnetic vortices suitable for transmission electron microscopy (TEM) and magnetic transmission x-ray microscopy (MTXM) studies is presented.
Electron and x-ray magnetic microscopies allow for high-resolution magnetic imaging down to tens of nanometers. However, the samples need to be prepared on transparent membranes which are very fragile and difficult to manipulate. We present processes for the fabrication of samples with magnetic micro- and nanostructures with spin configurations forming magnetic vortices suitable for Lorentz transmission electron microscopy and magnetic transmission x-ray microscopy studies. The samples are prepared on silicon nitride membranes and the fabrication consists of a spin coating, UV and electron-beam lithography, the chemical development of the resist, and the evaporation of the magnetic material followed by a lift-off process forming the final magnetic structures. The samples for the Lorentz transmission electron microscopy consist of magnetic nanodiscs prepared in a single lithography step. The samples for the magnetic x-ray transmission microscopy are used for time-resolved magnetization dynamic experiments, and magnetic nanodiscs are placed on a waveguide which is used for the generation of repeatable magnetic field pulses by passing an electric current through the waveguide. The waveguide is created in an extra lithography step.
The magnetism of nanostructures was intensively studied in the last two decades following technological trends towards miniaturization. As the lateral dimensions of the structures become smaller and smaller, the magnetic properties of ferromagnetic structures start to be governed by the structure geometry in addition to the properties of the magnetic material. The behavior of different magnetic elements from bulk materials to microstructures has been reviewed in detail (e.g., by Hubert and Schäfer)1. One of the most known examples of non-trivial magnetization ground state is magnetic vortices-curling magnetization structures occurring in micron- and submicron-sized thin magnetic discs and polygons. The magnetization here is curling in-plane around an out-of-plane vortex core2,3. The magnetization reversal of magnetic vortices has been extensively studied in both static4,5,6 and dynamic7,8,9,10 regimes. The possible applications of magnetic vortices are, e.g., multi-bit memory cells11, logic circuits12, radio-frequency devices13, or spin-wave emitters14.
To image a magnetic vortex and especially the vortex core, the spatial resolution of the microscopy technique should be as close as possible to fundamental magnetic length scales (below 10 nm). Lorentz transmission electron microscopy15 (LTEM) and magnetic transmission x-ray microscopy16 (MTXM) are ideal candidates for the imaging of magnetic vortices as they offer a high spatial resolution and MTXM also offers a high temporal resolution for magnetization dynamics studies. The disadvantage of these techniques is the complicated sample preparation, which is the subject of the presented paper.
The processes presented here explain the fabrication of samples used for imaging magnetic vortices by TEM17 and MTXM10,11. Both techniques are of transmission character, and because of that, it is necessary to fabricate the structures on thin membranes. The membranes are typically made from silicon nitride and their thickness ranges from tens of nanometers to a few hundreds of nanometers. Each of these two methods requires a different support frame geometry. In the case of MTXM, the frame is 5 x 5 mm2 and the window is large, 2 x 2 mm2. In the case of TEM, the frame geometry is a circle of 3 mm in diameter with the window size dependent on the experiment, typically 250 x 250 µm2. The membranes bring additional challenges of more difficult sample handling with the risk of breaking the windows during all the lithography processes.
The fabrication of samples can be done by both positive and negative resist lithography techniques18. The positive resist lithography process uses a positive resist; the chemical structure of the resist changes upon irradiation and the exposed part will become soluble in the chemical developer. The exposed area will wash away while the unexposed area will remain on the substrate. In the case of a negative resist lithography process, the irradiation hardens the resist and the exposed area will remain on the substrate while the unexposed area will wash away in the chemical developer. Both techniques can be used for the fabrication of the samples, but we prefer positive resist lithography because it requires fewer fabrication steps when compared to the negative resist lithography technique. It is also easier to handle, faster, and often provides better results.
We demonstrate a method for the fabrication of samples for TEM and MTXM. The permalloy nanodiscs with diameters ranging from 250 – 4000 nm and thicknesses between 20 – 100 nm are fabricated on 30 nm thick SiN membranes for TEM and 200 nm thick SiN membranes for MTXM. Photographs of the SiN membranes are shown in Figure 1.
Figure 1: Photograph of SiN membranes used as a substrate for MTXM (left) and TEM (right) samples. The image shows size comparison to a ruler. The MTXM frame is a 5 x 5 mm rectangle with a window thickness of 200 nm and the TEM frame fits a 3 mm circle in diameter with a window thickness of 30 nm. Please click here to view a larger version of this figure.
1. Fabrication of the Samples for TEM
Note: In this section, we describe the fabrication of the samples for TEM which is used for the observation of the nucleation process of magnetic vortices17. The membranes are chosen as the substrates because they offer a solid support for the lithographical fabrication of magnetic structures. An important parameter is the membrane window thickness. A higher accelerating voltage allows penetrating thicker samples, but any unnecessary thickness will cause a loss of signal19. For that reason, we use the thinnest membranes available from our supplier (30 nm).
Figure 2: Photograph of 3D printed adapter, used to hold the TEM membrane off-axis during the spin coating. Multiple membranes can be coated at the same time. Please click here to view a larger version of this figure.
Figure 3: Final sample imaged by optical and electron microscopies. (a) This panel shows the silicon nitride membrane window with the arrays of discs in the resist after the electron-beam exposure and resist development. (b) This panel shows the final array of the magnetic discs imaged by the SEM. (c) This panel shows the LTEM image of the magnetic vortices nucleation states in an array of the magnetic nanodiscs. Please click here to view a larger version of this figure.
2. Fabrication of the Samples for MTXM
Note: In MTXM measurements, we can take advantage of the technique’s time resolution. In order to introduce a high-frequency excitation of the magnetic vortices, fabricate a gold waveguide in the first step and then place magnetic discs on top of the waveguide in the second lithography step. The whole structure is fabricated on a 200 nm thick SiN membrane which is transparent enough for soft x-rays21. The detailed steps are described in the following text and the schematic of the process is shown in Figure 4. The process of the MTXM sample fabrication goes through all the steps described above for the TEM samples fabrication but an additional lithography step is required to fabricate the waveguide.
Figure 4: Schematics of preparation steps of a sample with discs and a waveguide on a silicon nitride membrane for MTXM time-resolved experiments. It involves a two-step lithography to obtain the final structure. Please click here to view a larger version of this figure.
Figure 5: SEM image of the final structure of 30 nm thick and 2 µm wide permalloy discs on a gold waveguide with alignment marks. The samples are used further for time-resolved MTXM experiments. Please click here to view a larger version of this figure.
Figure 1 shows the photographs of the SiN frames and membranes used for the MTXM and LTEM microscopies. Figure 2 shows the design of the 3D-printed adapters to hold the TEM membrane off-axis during the spin coating process. Figure 3 shows the various steps of the LTEM sample preparation (after the resist development and after the lift-off procedure) and the final image observed by the LTEM. Figure 4 shows the schematics of the preparation steps for the fabrication of the discs and the waveguide on the SiN membrane for the MTXM time-resolved experiments. Figure 5 shows the final MTXM sample containing the discs placed on a waveguide.
We have demonstrated the fabrication of samples for LTEM and MTXM magnetic microscopies. These samples need to be fabricated on thin SiN membranes so that the electrons, in the case of the LTEM, and the soft x-rays, in the case of the MTXM, can penetrate through the samples. These samples can be fabricated either by 1) a positive resist lithography or by 2) a negative resist lithography.
We used the positive resist lithography technique because it requires less sample preparation and fewer fabrication steps and allows easier processing. It also allows the researcher to use the shadowing effect, which we used for the precise disc shape control (a tapering of one side of the disc). This shape was used to control the circulation of the magnetic vortices during nucleation10,11.
The disadvantage of this technique is the complicated lift-off procedure because the thin film material is sometimes deposited on the resist edge and then cannot be removed by a lift-off. We solved this problem by using a double resist layer. This slightly limits the resolution (approximately 20 nm) of the lithographical process but remains sufficient for the purposes of magnetic imaging.
The negative resist lithography technique offers a higher resolution as structures with a resolution down to 7 nm can be written into the resist. The material is then etched away either by wet etching or by ion beam etching. The problem with this approach is that the resist is difficult to remove after the etching. Commonly used oxygen plasma resist stripping is not possible in the case of thin permalloy structures, as they oxidize very easily. This fact, together with the need to use the shadowing technique, favors the positive lithography process which was used throughout this work.
We used the samples prepared by the methods described in this paper for the observation of the dynamics of magnetic vortices during a circulation switching by an MTXM10,11 and for the observation of various nucleation states17. This can be extended to more types of experiments requiring lithographically prepared structures on the membranes.
The authors have nothing to disclose.
This research has been financially supported by the Grant Agency of the Czech Republic (Project No. 15-34632L) and by the CEITEC Nano+ project, ID CZ.02.1.01/0.0/0.0/16 013/0001728. The sample fabrication and the LTEM measurement were carried out in the CEITEC Nano Research Infrastructure (ID LM2015041, MEYS CR, 2016-2019). Meena Dhankhar was supported by a Brno Ph.D. talent scholarship.
SiN Membrane – TEM | Silson | SiRN-TEM-200-0.25-500 | TEM membrane |
SiN Membrane – MTXM | Silson | SiRN-5.0-200-3.0-200 | MTXM membrane |
3D adapter for spin coating | The model of the adapter for 3D printing can be downloaded at: https://www.thingiverse.com/thing:2808368 | ||
PMMA 950k electron beam resist | Allresist | AR-P 679.04 | used for TEM sample |
Electron beam resist developer | Allresist | AR 600-56 | used for TEM sample |
High-contrast electron beam resist | Allresist | AR-P 6200.13 | used for the waveguide on the MTXM sample |
High-contrast electron beam resist developer | Allresist | AR-600-546 | used for the waveguide on the MTXM sample |
Tetrakis(dimethylamido)titanium(IV) | Sigma Aldrich | 669008 Aldrich | used for TiO2 thin film deposition by ALD |
Electron beam resist for nanometer lithography | Allresist | AR-P 617.02 | used as the bottom layer of bilayer resist for easier lift-off procedure |
PMMA 950k electron beam resist | Allresist | AR-P 679.04 | used as the top layer of bilayer resist for easier lift-off procedure |
Electron beam resist developer | Allresist | AR 600-56 | used for development of the disks on waveguide |
Permalloy pellets | Kurt J Lesker | EVMPERMQXQ-D | used for the deposition of the magnetic layers |
Titanium pellets | Kurt J Lesker | EVMTI45QXQD | used as adhesive layer for the gold waveguide |
Gold pellets | Kurt J Lesker | EVMAUXX40G | used for the deposition of the waveguide |